Time filter

Source Type

London, United Kingdom

Hodgson K.,Kings College London | Mufti S.J.,Barts and the London Royal Hospital | Uher R.,Kings College London | Uher R.,Dalhousie University | McGuffin P.,Kings College London
Genome Medicine | Year: 2012

Antidepressants are among the most commonly prescribed drugs, and a range of medications are available. However, treatment response to a particular drug varies greatly between patients, with only 30% of patients responding well to the first treatment administered. Given evidence that antidepressant treatment response is a heritable trait, together with technological advances in genetic research, three recently published genome-wide investigations into antidepressant responses have examined the determinants of variability in treatment outcomes between depressed patients. Here, we review these studies within the context of wider research efforts to identify treatment response predictors. Some interesting genes have been implicated, but no variants have yet been robustly and reliably linked to response. This may suggest that genetic effect sizes are smaller than originally anticipated. Candidate gene approaches in these samples have lent support to the involvement of serotonergic, glutamatergic and stress-response systems in treatment response, although corroborative evidence from genome-wide analyses indicates these results should be interpreted cautiously. Closer examination of antidepressant response, considering it as a complex trait, has indicated that multiple genes of small effect are likely to be involved. Furthermore, there is some evidence that genetic influence on response to treatment may vary between patients with different symptom profiles or environmental exposures. This has implications for the translation of pharmacogenetic findings into clinical practice: genotypic information from multiple loci and data on non-genetic factors are likely to be needed to tailor antidepressant treatment to the individual patient. © 2012 BioMed Central Ltd.

Discover hidden collaborations