Time filter

Source Type

Alcalde J.,CSIC - Institute of Earth Sciences Jaume Almera | Marti D.,CSIC - Institute of Earth Sciences Jaume Almera | Juhlin C.,Uppsala University | Malehmir A.,Uppsala University | And 7 more authors.
Solid Earth | Year: 2013

The Basque-Cantabrian Basin of the northern Iberia Peninsula constitutes a unique example of a major deformation system, featuring a dome structure developed by extensional tectonics followed by compressional reactivation. The occurrence of natural resources in the area and the possibility of establishing a geological storage site for carbon dioxide motivated the acquisition of a 3-D seismic reflection survey in 2010, centered on the Jurassic Hontomín dome. The objectives of this survey were to obtain a geological model of the overall structure and to establish a baseline model for a possible geological CO2 storage site. The 36 km2 survey included approximately 5000 mixed (Vibroseis and explosives) source points recorded with a 25 m inline source and receiver spacing. The target reservoir is a saline aquifer, at approximately 1450 m depth, encased and sealed by carbonate formations. Acquisition and processing parameters were influenced by the rough topography and relatively complex geology. A strong near-surface velocity inversion is evident in the data, affecting the quality of the data. The resulting 3-D image provides constraints on the key features of the geologic model. The Hontomín structure is interpreted to consist of an approximately 10 7 m2 large elongated dome with two major (W-E and NW-SE) striking faults bounding it. Preliminary capacity estimates indicate that about 1.2 Gt of CO2 can be stored in the target reservoir. © 2013 Author(s). Source

Moeller S.,Leibniz Institute of Marine Science | Grevemeyer I.,Leibniz Institute of Marine Science | Ranero C.R.,Catalan Institution for Research and Advanced Studies | Berndt C.,Leibniz Institute of Marine Science | And 4 more authors.
Geochemistry, Geophysics, Geosystems | Year: 2013

Extension of the continental lithosphere leads to the formation of rift basins and ultimately may create passive continental margins. The mechanisms that operate during the early stage of crustal extension are still intensely debated. We present the results from coincident multichannel seismic and wide-angle seismic profiles that transect across the northern Tyrrhenian Sea Basin. The profiles cross the Corsica Basin (France) to the Latium Margin (Italy) where the early-rift stage of the basin is well preserved. We found two domains, each with a distinct tectonic style, heat flow and crustal thickness. One domain is the Corsica Basin in the west that formed before the main rift phase of the northern Tyrrhenian Sea opening (∼8-4 Ma). The second domain is rifted continental crust characterized by tilted blocks and half-graben structures in the central region and at the Latium Margin. These two domains are separated by a deep (∼10 km) sedimentary complex of the eastern portion of the Corsica Basin. Travel-time tomography of wide-angle seismic data reveals the crustal architecture and a subhorizontal 15-17 ± 1 km deep Moho discontinuity under the basin. To estimate the amount of horizontal extension we have identified the pre-, syn-, and post-tectonic sedimentary units and calculated the relative displacement of faults. We found that major faults initiated at angles of 45°-50° and that the rifted domain is horizontally stretched by a factor of β ∼ 1.3 (∼8-10 mm/a). The crust has been thinned from ∼24 to ∼17 km indicating a similar amount of extension (∼30%). The transect represents one of the best imaged early rifts and implies that the formation of crustal-scale detachments, or long-lived low-angle normal faults, is not a general feature that controls the rift initiation of continental crust. Other young rift basins, like the Gulf of Corinth, the Suez Rift or Lake Baikal, display features resembling the northern Tyrrhenian Basin, suggesting that half-graben formations and distributed homogeneous crustal thinning are a common feature during rift initiation. ©2013. American Geophysical Union. All Rights Reserved. Source

Prada M.,Barcelona Center for Subsurface Imaging | Prada M.,Dublin Institute for Advanced Studies | Ranero C.R.,Catalan Institution for Research and Advanced Studies | Sallares V.,Barcelona Center for Subsurface Imaging | And 2 more authors.
Tectonophysics | Year: 2016

The Tyrrhenian basin opened in the Neogene following the E-SE retreat of the Appenines-Calabrian subduction system and the subsequent back-arc extension of an orogenic crust. The resultant crustal structure includes a complex distribution of continental, back-arc magmatism, and mantle-exhumation domains. A clear example of this complex structure is found in the central and deepest part of the basin (i.e. Magnaghi-Vavilov sub-basin) where geophysical data supported that the bulk of the basement is composed of partially serpentinised peridotite representing exhumed mantle rocks, and intruded by basalts forming low ridges and volcanic edifices. However, those data sets cannot univocally demonstrate the widespread presence of serpentinised mantle rocks, let alone the percentage of serpentinisation. Here, we use S-wave arrivals and available geological information to further constrain the presence of mantle serpentinisation. Travel times of converted S-waves were used to derive the overall Vp/Vs and Poisson's ratio (σ), as well as S-wave velocity of the basement in the Magnaghi-Vavilov Basins. This analysis reveals Vp/Vs. ≈. 1.9 (σ. ≈. 0.3) that strongly supports a serpentinised peridotite forming the basement under the basins, rather than oceanic-type gabbro/diabase. P-wave velocity models is later used to quantify the amount of serpentinisation from fully serpentinised (up to 100%) at the top of the basement to <. 10% at 5-7. km deep, with a depth distribution similar to continent-ocean Transition zones at magma-poor rifted margins. Seismic reflection profiles show normal faulting at either flank of the Magnaghi-Vavilov Basin that is potentially responsible for the onset of serpentinisation and later mantle exhumation. These results, together with basement sampling information in the area, suggests that the late stage of mantle exhumation was accompanied or soon followed by the emplacement of MOR-type basalts forming low ridges that preceded intraplate volcanism responsible for the formation of large volcanoes in the area. © 2016 Elsevier B.V. Source

Prada M.,Barcelona Center for Subsurface Imaging | Sallares V.,Barcelona Center for Subsurface Imaging | Ranero C.R.,Catalan Institution for Research and Advanced Studies | Vendrell M.G.,Barcelona Center for Subsurface Imaging | And 3 more authors.
Journal of Geophysical Research: Solid Earth | Year: 2014

In this work we investigate the crustal and tectonic structures of the Central Tyrrhenian back-arc basin combining refraction and wide-angle reflection seismic (WAS), gravity, and multichannel seismic (MCS) reflection data, acquired during the MEDOC (MEDiterráneo OCcidental)-2010 survey along a transect crossing the entire basin from Sardinia to Campania at 40°N. The results presented include a ~450 km long 2-D P wave velocity model, obtained by the traveltime inversion of the WAS data, a coincident density model, and a MCS poststack time-migrated profile. We interpret three basement domains with different petrological affinity along the transect based on the comparison of velocity and velocity-derived density models with existing compilations for continental crust, oceanic crust, and exhumed mantle. The first domain includes the continental crust of Sardinia and the conjugate Campania margin. In the Sardinia margin, extension has thinned the crust from ~20 km under the coastline to ~13 km ~60 km seaward. Similarly, the Campania margin is also affected by strong extensional deformation. The second domain, under the Cornaglia Terrace and its conjugate Campania Terrace, appears to be oceanic in nature. However, it shows differences with respect to the reference Atlantic oceanic crust and agrees with that generated in back-arc oceanic settings. The velocities-depth relationships and lack of Moho reflections in seismic records of the third domain (i.e., the Magnaghi and Vavilov basins) support a basement fundamentally made of mantle rocks. The large seamounts of the third domain (e.g., Vavilov) are underlain by 10-20 km wide, relatively low-velocity anomalies interpreted as magmatic bodies locally intruding the mantle. ©2013. American Geophysical Union. All Rights Reserved. Source

Prada M.,Barcelona Center for Subsurface Imaging | Sallares V.,Barcelona Center for Subsurface Imaging | Ranero C.R.,Catalan Institution for Research and Advanced Studies | Vendrell M.G.,Barcelona Center for Subsurface Imaging | And 3 more authors.
Geophysical Journal International | Year: 2015

Geophysical data from the MEDOC experiment across the Northern Tyrrhenian backarc basin has mapped a failed rift during backarc extension of cratonic Variscan lithosphere. In contrast, data across the Central Tyrrhenian have revealed the presence of magmatic accretion followed by mantle exhumation after continental breakup. Here we analyse the MEDOC transect E-F, which extends from Sardinia to the Campania margin at 40.5°N, to define the distribution of geological domains in the transition from the complex Central Tyrrhenian to the extended continental crust of the Northern Tyrrhenian. The crust and uppermost mantle structure along this ~400-km-long transect have been investigated based on wide-angle seismic data, gravity modelling and multichannel seismic reflection imaging. The P-wave tomographic model together with a P-wave-velocity-derived density model and the multichannel seismic images reveal seven different domains along this transect, in contrast to the simpler structure to the south and north. The stretched continental crust under Sardinia margin abuts the magmatic crust of Cornaglia Terrace, where accretion likely occurred during backarc extension. Eastwards, around Secchi seamount, a second segment of thinned continental crust (7-8 km) is observed. Two short segments of magmatically modified continental crust are separated by the ~5-km-wide segment of the Vavilov basin possibly made of exhumed mantle rocks. The eastern segment of the 40.5°N transect E-F is characterized by continental crust extending from mainland Italy towards the Campania margin. Ground truthing and prior geophysical information obtained north and south of transect E-F was integrated in this study to map the spatial distribution of basement domains in the Central Tyrrhenian basin. The northward transition of crustal domains depicts a complex 3-D structure represented by abrupt spatial changes of magmatic and non-magmatic crustal domains. These observations imply rapid variations of magmatic activity difficult to reconcile with current models of extension of continental lithosphere essentially 2-D over long distances. © The Authors 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society. Source

Discover hidden collaborations