Time filter

Source Type

Cork, Ireland

Zhao F.,Chinese Academy of Agricultural Sciences | McParland S.,Teagasc | Kearney F.,Bandon Co. | Du L.,Chinese Academy of Agricultural Sciences | Berry D.P.,Teagasc
Genetics Selection Evolution | Year: 2015

Background: Artificial selection for economically important traits in cattle is expected to have left distinctive selection signatures on the genome. Access to high-density genotypes facilitates the accurate identification of genomic regions that have undergone positive selection. These findings help to better elucidate the mechanisms of selection and to identify candidate genes of interest to breeding programs. Results: Information on 705 243 autosomal single nucleotide polymorphisms (SNPs) in 3122 dairy and beef male animals from seven cattle breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental) were used to detect selection signatures by applying two complementary methods, integrated haplotype score (iHS) and global fixation index (FST). To control for false positive results, we used false discovery rate (FDR) adjustment to calculate adjusted iHS within each breed and the genome-wide significance level was about 0.003. Using the iHS method, 83, 92, 91, 101, 85, 101 and 86 significant genomic regions were detected for Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental cattle, respectively. None of these regions was common to all seven breeds. Using the FST approach, 704 individual SNPs were detected across breeds. Annotation of the regions of the genome that showed selection signatures revealed several interesting candidate genes i.e. DGAT1, ABCG2, MSTN, CAPN3, FABP3, CHCHD7, PLAG1, JAZF1, PRKG2, ACTC1, TBC1D1, GHR, BMP2, TSG1, LYN, KIT and MC1R that play a role in milk production, reproduction, body size, muscle formation or coat color. Fifty-seven common candidate genes were found by both the iHS and global FST methods across the seven breeds. Moreover, many novel genomic regions and genes were detected within the regions that showed selection signatures; for some candidate genes, signatures of positive selection exist in the human genome. Multilevel bioinformatic analyses of the detected candidate genes suggested that the PPAR pathway may have been subjected to positive selection. Conclusions: This study provides a high-resolution bovine genomic map of positive selection signatures that are either specific to one breed or common to a subset of the seven breeds analyzed. Our results will contribute to the detection of functional candidate genes that have undergone positive selection in future studies. © 2015 Zhao et al.

Berkowicz E.W.,University College Dublin | Magee D.A.,University College Dublin | Berry D.P.,Teagasc | Sikora K.M.,University College Cork | And 7 more authors.
Animal Genetics | Year: 2012

The regulation of the bioavailability of insulin-like growth factors (IGFs) is critical for normal mammalian growth and development. The imprinted insulin-like growth factor 2 receptor gene (IGF2R) encodes a transmembrane protein receptor that acts to sequester and degrade excess circulating insulin-like growth factor 2 (IGF-II) - a potent foetal mitogen - and is considered an important inhibitor of growth. Consequently, IGF2R may serve as a candidate gene underlying important growth- and body-related quantitative traits in domestic mammalian livestock. In this study, we have quantified genotype-phenotype associations between three previously validated intronic bovine IGF2R single nucleotide polymorphisms (SNPs) (IGF2R:g.64614T>C, IGF2R:g.65037T>C and IGF2R:g.86262C>T) and a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. Notably, all three polymorphisms analysed were associated (P ≥ 0.05) with at least one of a number of performance traits related to animal body size: angularity, body depth, chest width, rump width, and animal stature. In addition, the C-to-T transition at the IGF2R:g.65037T>C polymorphism was positively associated with cow carcass weight and angularity. Correction for multiple testing resulted in the retention of two genotype-phenotype associations (animal stature and rump width). None of the SNPs analysed were associated with any of the milk traits examined. Analysis of pairwise r 2 measures of linkage disequilibrium between all three assayed SNPs ranged between 0.41 and 0.79, suggesting that some of the observed SNP associations with performance may be independent. To our knowledge, this is one of the first studies demonstrating associations between IGF2R polymorphisms and growth- and body-related traits in cattle. These results also support the increasing body of evidence that imprinted genes harbour polymorphisms that contribute to heritable variation in phenotypic traits in domestic livestock species. © 2011 Stichting International Foundation for Animal Genetics.

Mc Hugh N.,Teagasc | Mc Hugh N.,University College Dublin | Evans R.D.,Bandon Co. | Amer P.R.,Abacus Biotech Ltd | And 2 more authors.
Journal of Animal Science | Year: 2011

Beef outputs from dairy farms make an important contribution to overall profitability in Irish dairy herds and are the sole source of revenue in many beef herds. The aim of this study was to estimate genetic parameters for animal BW and price across different stages of maturity. Data originated from 2 main sources: price and BW from livestock auctions and BW from on-farm weighings between 2000 and 2008. The data were divided into 4 distinct maturity categories: calves (n = 24,513), weanlings (n = 27,877), postweanlings (n = 23,279), and cows (n = 4,894). A univariate animal model used to estimate variance components was progressively built up to include a maternal genetic effect and a permanent environmental maternal effect. Bivariate analyses were used to estimate genetic covariances between BW and price per animal within and across maturity category. Direct heritability estimates for price per animal were 0.34 ± 0.03, 0.31 ± 0.05, 0.19 ± 0.04, and 0.10 ± 0.04 for calves, weanling, postweanlings, and cows, respectively. Direct heritability estimates for BW were 0.26 ± 0.03 for weanlings, 0.25 ± 0.04 for postweanlings, and 0.24 ± 0.06 for cows; no BW data were available on calves. Significant maternal genetic and maternal permanent environmental effects were observed for weanling BW only. The genetic correlation between price per animal and BW within each maturity group varied from 0.55 ± 0.06 (postweanling price and BW) to 0.91 ± 0.04 (cow price and BW). The availability of routinely collected data, along with the existence of ample genetic variation for animal BW and price per animal, facilitates their inclusion in Irish dairy and beef breeding objectives to better reflect the profitability of both enterprises. ©2011 American Society of Animal Science.

Berry D.P.,Teagasc | McParland S.,Teagasc | Kearney J.F.,Bandon Co. | Sargolzaei M.,University of Guelph | Mullen M.P.,Teagasc
Animal | Year: 2014

The objective of this study was to quantify the accuracy of imputing the genotype of parents using information on the genotype of their progeny and a family-based and population-based imputation algorithm. Two separate data sets were used, one containing both dairy and beef animals (n=3122) with high-density genotypes (735 151 single nucleotide polymorphisms (SNPs)) and the other containing just dairy animals (n=5489) with medium-density genotypes (51 602 SNPs). Imputation accuracy of three different genotype density panels were evaluated representing low (i.e. 6501 SNPs), medium and high density. The full genotypes of sires with genotyped half-sib progeny were masked and subsequently imputed. Genotyped half-sib progeny group sizes were altered from 4 up to 12 and the impact on imputation accuracy was quantified. Up to 157 and 258 sires were used to test the accuracy of imputation in the dairy plus beef data set and the dairy-only data set, respectively. The efficiency and accuracy of imputation was quantified as the proportion of genotypes that could not be imputed, and as both the genotype concordance rate and allele concordance rate. The median proportion of genotypes per animal that could not be imputed in the imputation process decreased as the number of genotyped half-sib progeny increased; values for the medium-density panel ranged from a median of 0.015 with a half-sib progeny group size of 4 to a median of 0.0014 to 0.0015 with a half-sib progeny group size of 8. The accuracy of imputation across different paternal half-sib progeny group sizes was similar in both data sets. Concordance rates increased considerably as the number of genotyped half-sib progeny increased from four (mean animal allele concordance rate of 0.94 in both data sets for the medium-density genotype panel) to five (mean animal allele concordance rate of 0.96 in both data sets for the medium-density genotype panel) after which it was relatively stable up to a half-sib progeny group size of eight. In the data set with dairy-only animals, sufficient sires with paternal half-sib progeny groups up to 12 were available and the within-animal mean genotype concordance rates continued to increase up to this group size. The accuracy of imputation was worst for the low-density genotypes, especially with smaller half-sib progeny group sizes but the difference in imputation accuracy between density panels diminished as progeny group size increased; the difference between high and medium-density genotype panels was relatively small across all half-sib progeny group sizes. Where biological material or genotypes are not available on individual animals, at least five progeny can be genotyped (on either a medium or high-density genotyping platform) and the parental alleles imputed with, on average, ≥96% accuracy. © The Animal Consortium 2014.

Cottle D.J.,University College Dublin | Cottle D.J.,University of New England of Australia | Gilmour A.R.,Cargo Inc | Pabiou T.,Bandon Co. | And 2 more authors.
Journal of Animal Breeding and Genetics | Year: 2016

It is sometimes possible to breed for more uniform individuals by selecting animals with a greater tendency to be less variable, that is, those with a smaller environmental variance. This approach has been applied to reproduction traits in various animal species. We have evaluated fecundity in the Irish Belclare sheep breed by analyses of flocks with differing average litter size (number of lambs per ewe per year, NLB) and have estimated the genetic variance in environmental variance of lambing traits using double hierarchical generalized linear models (DHGLM). The data set comprised of 9470 litter size records from 4407 ewes collected in 56 flocks. The percentage of pedigreed lambing ewes with singles, twins and triplets was 30, 54 and 14%, respectively, in 2013 and has been relatively constant for the last 15 years. The variance of NLB increases with the mean in this data; the correlation of mean and standard deviation across sires is 0.50. The breeding goal is to increase the mean NLB without unduly increasing the incidence of triplets and higher litter sizes. The heritability estimates for lambing traits were NLB, 0.09; triplet occurrence (TRI) 0.07; and twin occurrence (TWN), 0.02. The highest and lowest twinning flocks differed by 23% (75% versus 52%) in the proportion of ewes lambing twins. Fitting bivariate sire models to NLB and the residual from the NLB model using a double hierarchical generalized linear model (DHGLM) model found a strong genetic correlation (0.88 ± 0.07) between the sire effect for the magnitude of the residual (VE) and sire effects for NLB, confirming the general observation that increased average litter size is associated with increased variability in litter size. We propose a threshold model that may help breeders with low litter size increase the percentage of twin bearers without unduly increasing the percentage of ewes bearing triplets in Belclare sheep. © 2016 Blackwell Verlag GmbH.

Discover hidden collaborations