Time filter

Source Type

London, United Kingdom

Balfour Beatty plc is a multinational infrastructure group with capabilities in construction services, support services and infrastructure investments. A constituent of the FTSE 250 Index, Balfour Beatty works for customers principally in the UK and the US, with developing businesses in Australia, Canada, the Middle East and South East Asia.Balfour Beatty is the largest construction contractor in the UK. Wikipedia.

Agency: GTR | Branch: EPSRC | Program: | Phase: Training Grant | Award Amount: 3.68M | Year: 2014

The UK water sector is experiencing a period of profound change with both public and private sector actors seeking evidence-based responses to a host of emerging global, regional and national challenges which are driven by demographic, climatic, and land use changes as well as regulatory pressures for more efficient delivery of services. Although the UK Water Industry is keen to embrace the challenge and well placed to innovate, it lacks the financial resources to support longer term skills and knowledge generation. A new cadre of engineers is required for the water industry to not only make our society more sustainable and profitable but to develop a new suite of goods and services for a rapidly urbanising world. EPSRC Centres for Doctoral Training provide an ideal mechanism with which to remediate the emerging shortfall in advanced engineering skills within the sector. In particular, the training of next-generation engineering leaders for the sector requires a subtle balance between industrial and academic contributions; calling for a funding mechanism which privileges industrial need but provides for significant academic inputs to training and research. The STREAM initiative draws together five of the UKs leading water research and training groups to secure the future supply of advanced engineering professionals in this area of vital importance to the UK. Led by the Centre for Water Science at Cranfield University, the consortium also draws on expertise from the Universities of Sheffield and Bradford, Imperial College London, Newcastle University, and the University of Exeter. STREAM offers Engineering Doctorate and PhD awards through a programme which incorporates; (i) acquisition of advanced technical skills through attendance at masters level training courses, (ii) tuition in the competencies and abilities expected of senior engineers, and (iii) doctoral level research projects. Our EngD students spend at least 75% of their time working in industry or on industry specified research problems. Example research topics to be addressed by the schemes students include; delivering drinking water quality and protecting public health; reducing carbon footprint; reducing water demand; improving service resilience and reliability; protecting natural water bodies; reducing sewer flooding, developing and implementing strategies for Integrated Water Management, and delivering new approaches to characterising, communicating and mitigating risk and uncertainty. Fifteen studentships per year for five years will be offered with each position being sponsored by an industrial partner from the water sector. A series of common attendance events will underpin programme and group identity. These include, (i) an initial three-month taught programme based at Cranfield University, (ii) an open invitation STREAM symposium and (iii) a Challenge Week to take place each summer including transferrable skills training and guest lectures from leading industrialists and scientists. Outreach activities will extend participation in the programme, pursue collaboration with associated initiatives, promote brand awareness of the EngD qualification, and engage with a wide range of stakeholder groups (including the public) to promote engagement with and understanding of STREAM activities. Strategic direction for the programme will be formulated through an Industry Advisory Board comprising representatives from professional bodies, employers, and regulators. This body will provide strategic guidance informed by sector needs, review the operational aspects of the taught and research components as a quality control, and conduct foresight studies of relevant research areas. A small International Steering Committee will ensure global relevance for the programme. The total cost of the STREAM programme is £9m, £2.8m of which is being invested by industry and £1.8m by the five collaborating universities. Just under £4.4m is being requested from EPSRC

Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 491.66K | Year: 2015

The worlds manufacturing economy has been transformed by the phenomenon of globalisation, with benefits for economies of scale, operational flexibility, risk sharing and access to new markets. It has been at the cost of a loss of manufacturing and other jobs in western economies, loss of core capabilities and increased risks of disruption in the highly interconnected and interdependent global systems. The resource demands and environmental impacts of globalisation have also led to a loss of sustainability. New highly adaptable manufacturing processes and techniques capable of operating at small scales may allow a rebalancing of the manufacturing economy. They offer the possibility of a new understanding of where and how design, manufacture and services should be carried out to achieve the most appropriate mix of capability and employment possibilities in our economies but also to minimise environmental costs, to improve product specialisation to markets and to ensure resilience of provision under natural and socio-political disruption. This proposal brings together an interdisciplinary academic team to work with industry and local communities to explore the impact of this re-distribution of manufacturing (RDM) at the scale of the city and its hinterland, using Bristol as an example in its European Green Capital year, and concentrating on the issues of resilience and sustainability. The aim of this exploration will be to develop a vision, roadmap and research agenda for the implications of RDM for the city, and at the same time develop a methodology for networked collaboration between the many stakeholders that will allow deep understanding of the issues to be achieved and new approaches to their resolution explored. The network will study the issues from a number of disciplinary perspectives, bringing together experts in manufacturing, design, logistics, operations management, infrastructure, resilience, sustainability, engineering systems, geographical sciences, mathematical modelling and beyond. They will consider how RDM may contribute to the resilience and sustainability of a city in a number of ways: firstly, how can we characterise the economic, social and environmental challenges that we face in the city for which RDM may contribute to a solution? Secondly, what are the technical developments, for example in manufacturing equipment and digital technologies, that are enablers for RDM, and what are their implications for a range of manufacturing applications and for the design of products and systems? Thirdly, what are the social and political developments, for example in public policy, in regulation, in the rise of social enterprise or environmentalism that impact on RDM and what are their implications? Fourthly, what are the business implications, on supply networks and logistics arrangements, of the re-distribution? Finally, what are the implications for the physical and digital infrastructure of the city? In addition, the network will, through the way in which it carries out embedded focused studies, explore mechanisms by which interdisciplinary teams may come together to address societal grand challenges and develop research agendas for their solution. These will be based on working together using a combination of a Collaboratory - a centre without walls - and a Living Lab - a gathering of public-private partnerships in which businesses, researchers, authorities, and citizens work together for the creation of new services, business ideas, markets, and technologies.

Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 3.44M | Year: 2013

Compared to many parts of the world, the UK has under-invested in its infrastructure in recent decades. It now faces many challenges in upgrading its infrastructure so that it is appropriate for the social, economic and environmental challenges it will face in the remainder of the 21st century. A key challenge involves taking into account the ways in which infrastructure systems in one sector increasingly rely on other infrastructure systems in other sectors in order to operate. These interdependencies mean failures in one system can cause follow-on failures in other systems. For example, failures in the water system might knock out electricity supplies, which disrupt communications, and therefore transportation, which prevent engineers getting to the original problem in the water infrastructure. These problems now generate major economic and social costs. Unfortunately they are difficult to manage because the UK infrastructure system has historically been built, and is currently operated and managed, around individual infrastructure sectors. Because many privatised utilities have focused on operating infrastructure assets, they have limited experience in producing new ones or of understanding these interdependencies. Many of the old national R&D laboratories have been shut down and there is a lack of capability in the UK to procure and deliver the modern infrastructure the UK requires. On the one hand, this makes innovation risky. On the other hand, it creates significant commercial opportunities for firms that can improve their understanding of infrastructure interdependencies and speed up how they develop and test their new business models. This learning is difficult because infrastructure innovation is undertaken in complex networks of firms, rather than in an individual firm, and typically has to address a wide range of stakeholders, regulators, customers, users and suppliers. Currently, the UK lacks a shared learning environment where these different actors can come together and explore the strengths and weaknesses of different options. This makes innovation more difficult and costly, as firms are forced to learn by doing and find it difficult to anticipate technical, economic, legal and societal constraints on their activity before they embark on costly development projects. The Centre will create a shared, facilitated learning environment in which social scientists, engineers, industrialists, policy makers and other stakeholders can research and learn together to understand how better to exploit the technical and market opportunities that emerge from the increased interdependence of infrastructure systems. The Centre will focus on the development and implementation of innovative business models and aims to support UK firms wishing to exploit them in international markets. The Centre will undertake a wide range of research activities on infrastructure interdependencies with users, which will allow problems to be discovered and addressed earlier and at lower cost. Because infrastructure innovations alter the social distribution of risks and rewards, the public needs to be involved in decision making to ensure business models and forms of regulation are socially robust. As a consequence, the Centre has a major focus on using its research to catalyse a broader national debate about the future of the UKs infrastructure, and how it might contribute towards a more sustainable, economically vibrant, and fair society. Beneficiaries from the Centres activities include existing utility businesses, entrepreneurs wishing to enter the infrastructure sector, regulators, government and, perhaps most importantly, our communities who will benefit from more efficient and less vulnerable infrastructure based services.

Agency: GTR | Branch: EPSRC | Program: | Phase: Training Grant | Award Amount: 5.83M | Year: 2009

This proposal from Loughborough University outlines the case to renew the funding for the Industrial Doctorate Centre for Innovative and Collaborative Construction Engineering (CICE) as part of the Industrial Doctorate Centres call aginst the Towards Better Exploitation element of the EPSRC Delivery Plan. In partnership with an established industry base, CICE is delivering a high quality research and training programme that: meets the core technical and business needs of the construction industry; enhances its knowledge base; and produces high calibre doctoral graduates that can drive innovation. The Centre addresses a wide range of research issues that concern the UK construction industry including: Innovative Construction Technologies; Construction Business Processes; Advanced Information and Communication Technologies; Sustainable Design and Construction; and Transport and Infrastructure. Many of these areas have been highlighted in various reviews of the industry including the Latham Report, the Technology Foresight Report, the Egan Task Force Report, and more recently the National Technology Platforms research priorities. It also contributes to the EPSRC Delivery Plan as part of the knowledge transfer research and training activities. The research areas of the Centre align with the Engineering and Science for Sustainability research theme, as outlined in the EPSRCs Research Priorities and Opportunities, and fall under the Construction and the Built Environment and Transport sub-themes. Within the Construction and Built Environment, the Centre builds on existing strengths in the Department of Civil and Building Engineering established as part of the Engineering Doctorate Centre and other related industry based research to address some of the EPSRC research priorities to improve efficiency across the supply chain, including: encouraging the uptake of ICT to promote efficiency; improving building performance to minimise impacts on the environment ; and the analysis and design of civil engineering structures . Within the Transport area Sustainability and Innovation are key themes of the research that centres on transport operation and management, transport telematics, and minimising energy use and environmental impact . The Engineering Doctorate Centre (CICE) was established in 1999 and has subsequently recruited a total of 94 research engineers sponsored by a total of 63 large, medium and small companies. Loughborough University is a research intensive institution, which integrates its research and teaching activity at every opportunity to provide a top quality research led learning experience for all its students. The Department of Civil and Building Engineering has consistently achieved high research rating in the RAE assessments and the last RAE results were 5* in Built Environment. The Engineering Doctorate is part of Loughborough Universitys excellent doctoral research training programme, which in addition to supporting the pursuit of a particular project aims to provide a basic professional training to support the research and offer personal development opportunities. The training programme integrates taught and research elements tailored to suit the needs of the research engineer, project, and the sponsoring company while maintaining the expected quality of the academic standards required for a doctoral study. The Centre is managed by the Director, Prof. Dino Bouchlaghem supported by a Deputy Director, a Centre Manager and an Administrator. A Centre Management Board consisting of the Director, Deputy Director, and Industrial Representatives meets twice a year and is chaired by a senior industrialist from one of the sponsoring companies, oversees the work of the Centre and provides direction and guidance on strategic matters. This proposal has the full support of the University and has been subject to an internal review process to ensure synergy with the Universitys Research Strategy.

Agency: Cordis | Branch: FP7 | Program: CSA-CA | Phase: SST-2007-1.2-01;SST-2007-1.2-02 | Award Amount: 1.14M | Year: 2009

InfraGuidER Coordinated Action primary objective is to define the guidelines for developing an effective European method/tool for the environmental impact evaluation of the railway infrastructure (existing and new). Despite a similar process has been already provided for the rolling stock the railway infrastructure is a more complex system where in the last year a silent revolution has been performed in order to face the high performances of trains (high speed trains), to attract the freight transport, to reduce the maintenance and operational costs, to comply with the local, regional regulation in terms of environmental impact. To avoid that this revolution will create a great unbalance among regions and to support the know-how and best practices transfer it is important to assess by a consensus process at European level the following items: the current state of environmental performance within the railway sector, and to highlight the criticalities to become effective and practical for the internal Environmental Management system implemented by railway companies and suppliers; the infrastructure functional subsystems and interfaces from the environment point of view; balance of goods in terms of material flow, environmental performance indicators EPIs and relevant ranking. Finally, as result of the three steps, the specification for the environmental part of a sustainability management system is provided and disseminated to end users (railway infrastructure managers and international organisations), to suppliers and academia (through EURNEX poles of excellence). According to this description InfraGuidER will be delivered in four main work packages. Other two work packages related to the management and communication/dissemination of the project are included in order to guarantee and to monitor the quality and effectiveness of the coordination mechanism. InfraGuidER fits with SST.2007.1.2.1 The greening of transport-specific industrial processes

Discover hidden collaborations