Entity

Time filter

Source Type


Pauli N.,University of Western Australia | Donough C.,International Plant Nutrition Institute | Oberthur T.,International Plant Nutrition Institute | Cock J.,International Plant Nutrition Institute | And 7 more authors.
Agriculture, Ecosystems and Environment | Year: 2014

Increasing the yield of existing oil palm plantations is one means of accommodating some of the growing demand for palm oil. The International Plant Nutrition Institute (IPNI) has developed and tested a process to deploy a series of 'best management practices' (BMPs) that cover a range of agronomic practices intended to intensify oil palm production and improve yield at a given site using cost-effective, practical methods. Many of these BMPs include techniques that should also improve soil quality, such as the addition of organic matter to the soil surface, and improved timing and tailored application of mineral and organic fertilisers. Six plantations in Kalimantan and Sumatra applied BMPs prescribed by IPNI (BMP treatment), and standard management practices (REF treatment) in paired blocks of oil palm over four years; 30 pairs of blocks were included in the research. Soils were sampled in both treatments before and after the field trial, from beneath weeded circles surrounding individual palms and beneath frond piles in between rows of palms, at 0-20. cm depth and 20-40. cm depth. Soils were tested for a range of properties, including soil pH, % soil organic carbon (% SOC), total N, available P, and exchangeable cations. No clear, consistent differences were found in the degree of change in soil properties between BMP and REF treatments over four years. However, improvements in some soil properties were noted for both treatments, particularly for soil pH and % SOC. There was no significant deterioration in the measured soil properties over the four years. The results suggest that appropriate management practices for oil palm can improve several aspects of soil quality. Further research on the mechanisms by which BMPs can improve soil quality, and monitoring over longer periods of time is recommended to give plantation managers a clearer picture of the potential 'co-benefits' that can be obtained with adoption of BMPs designed to increase oil palm yield. © 2014 Elsevier B.V. Source


Sisunandar,University of Queensland | Sisunandar,Muhammadiyah University of Purwokerto | Sopade P.A.,University of Queensland | Samosir Y.M.S.,University of Queensland | And 3 more authors.
Cryo-Letters | Year: 2012

Protocols are proposed for the low (-20°C) and ultra-low (-80°C) temperature storage of coconut (Cocos nucifera L.) embryos. A tissue dehydration step prior to storage, and a rapid warming step upon recovery optimized the protocol. The thermal properties of water located within the embryos were monitored using differential scanning calorimetry (DSC). In the most efficient version of the protocol, embryos were dehydrated under a sterile air flow in a dehydration solution containing glucose (3.33 M) and glycerol (15%) for 16 hours. This protocol decreased the embryo water content from 77 to 29% FW and at the same time reduced the amount of freezable water down to 0.03%. The dehydrated embryos could be stored for up to 3 weeks at -20°C (12% producing normal plants upon recovery) or 26 weeks at -80°C (28% producing normal plants upon recovery). These results indicate that it is possible to store coconut germplasm on a medium term basis using an ultra-deep freezer unit. However for more efficient, long term storage, cryopreservation remains the preferred option. © CryoLetters. Source


Sisunandar,University of Queensland | Sisunandar,Muhammadiyah University of Purwokerto | Novarianto H.,Indonesian Coconut and Other Palm Research Institute | Mashud N.,Indonesian Coconut and Other Palm Research Institute | And 3 more authors.
In Vitro Cellular and Developmental Biology - Plant | Year: 2014

Genetic diversity of coconut (Cocos nucifera L.) is being lost due to a combination of pest and disease attack, urban encroachment, natural disasters, as well as introgression with exotic genetic types. Consequently, there is a need to undertake germplasm conservation before further loss occurs. Since coconut has a large, recalcitrant seed (sensitive to desiccation), it cannot be stored in traditional ways in a seed bank. Cryopreservation of zygotic embryos is now seen as an important storage approach although published techniques are still not reliable. Given the importance of embryo maturity to the success of cryopreservation in other species, the effect of coconut embryo maturity on cryopreservation success was investigated using four cultivars (‘Nias Yellow Dwarf’, ‘Tebing Tinggi Dwarf’, ‘Takome Tall’, and ‘Bali Tall’). After cryopreservation, using a new four-step protocol (rapid desiccation, rapid freezing, rapid thawing, and recovery and acclimatization for 4 mo in the glasshouse), we found that the embryos isolated from an 11-mo-old fruit gave the highest number of normal seedlings (~28%) when compared to counterparts excised from younger fruits. In addition, the results showed that fruit could be stored for up to 3 wk prior to embryo isolation before their performance in cryopreservation was compromised. © 2014, The Society for In Vitro Biology. Source


Samosir Y.M.S.,University of Queensland | Samosir Y.M.S.,Bakrie Agriculture Research Institute BARI | Adkins S.,University of Queensland
In Vitro Cellular & Developmental Biology - Plant | Year: 2014

An in vitro photoautotrophic step based on the supply of CO2-enriched air (1,600 μmol mol-1) during the light phase and ambient air (350 μmol mol-1 CO2) during the dark phase has been used to promote the ex vitro establishment of coconut (Cocos nucifera L.) seedlings. The introduction of this step into a previously developed in vitro protocol was found to improve the quality of the seedlings (as assessed by fresh weight increase, physical stature, leaf area and thickness, stomatal density, and chlorophyll a content, and primary and secondary root production), the proportion of seedlings successfully transferred to soil (improvement from 40% to 100%) and achieved in a shorter time (reduction from 10 to 6 mo). Best results using this photoautotrophic growth step were obtained when a low medium concentration of sucrose (43.8 mM or lower) was used, when it was applied to seedlings that had already reached 4 or 5 mo of age in the in vitro culture step, and when seedlings were cultured in the photoautotrophic system for 2 mo or more before transfer to soil. Our improved protocol is more efficient and it reduces the cost per plant for the international exchange of coconut germplasm. © 2014 The Society for In Vitro Biology. Source

Discover hidden collaborations