Entity

Time filter

Source Type

Cambridge, United Kingdom

The Babraham Institute, is an independent charitable life science institute involved in biomedical research, set in an extensive parkland estate just south of Cambridge. Its current director is Prof. Michael Wakelam. Wikipedia.


Berridge M.J.,Babraham Institute
Biochemical Society Transactions | Year: 2012

A wide range of Ca 2+ signalling systems deliver the spatial and temporal Ca 2+ signals necessary to control the specific functions of different cell types. Release of Ca 2+ by InsP 3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca 2+ signals being set either too high or too low. Such subtle dysregulation of Ca 2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease. © The Authors Journal compilation © 2012 Biochemical Society. Source


Fearnley C.J.,Babraham Institute
Cold Spring Harbor perspectives in biology | Year: 2011

Calcium (Ca(2+)) is a critical regulator of cardiac myocyte function. Principally, Ca(2+) is the link between the electrical signals that pervade the heart and contraction of the myocytes to propel blood. In addition, Ca(2+) controls numerous other myocyte activities, including gene transcription. Cardiac Ca(2+) signaling essentially relies on a few critical molecular players--ryanodine receptors, voltage-operated Ca(2+) channels, and Ca(2+) pumps/transporters. These moieties are responsible for generating Ca(2+) signals upon cellular depolarization, recovery of Ca(2+) signals following cellular contraction, and setting basal conditions. Whereas these are the central players underlying cardiac Ca(2+) fluxes, networks of signaling mechanisms and accessory proteins impart complex regulation on cardiac Ca(2+) signals. Subtle changes in components of the cardiac Ca(2+) signaling machinery, albeit through mutation, disease, or chronic alteration of hemodynamic demand, can have profound consequences for the function and phenotype of myocytes. Here, we discuss mechanisms underlying Ca(2+) signaling in ventricular and atrial myocytes. In particular, we describe the roles and regulation of key participants involved in Ca(2+) signal generation and reversal. Source


Berridge M.J.,Babraham Institute
Journal of Physiology | Year: 2014

Alzheimer's disease (AD) begins with a decline in cognition followed by neuronal cell death and dementia. These changes have been linked to a deregulation of Ca2+ signalling caused by a progressive increase in the resting level of Ca2+, which may influence cognition by interfering with the rhythm rheostat that controls the sleep/wake cycle. The rise in resting levels of Ca2+ may not alter the processes of memory acquisition during consciousness (gamma and theta rhythms), but may duplicate some of the events that occur during the slow oscillations responsible for the twin processes of memory consolidation and memory erasure that occur during sleep. The persistent elevation in the resting level of Ca2+ induced by an accumulation of amyloid β (Aβ) oligomers duplicates a similar small global elevation normally restricted to the period of slow oscillations when memories are erased during sleep. In AD, such a rapid erasure of memories soon after they are acquired during the wake period means that they are not retained for consolidation during sleep. The Aβ deregulates Ca2+ signalling through direct effects on the neurons and indirectly by inducing inflammatory responses in the microglia and astrocytes. Some of these deleterious effects of Aβ may be alleviated by vitamin D. © 2013 The Physiological Society. Source


Spivakov M.,Babraham Institute
BioEssays | Year: 2014

Transcription factor binding sites (TFBSs) on the DNA are generally accepted as the key nodes of gene control. However, the multitudes of TFBSs identified in genome-wide studies, some of them seemingly unconstrained in evolution, have prompted the view that in many cases TF binding may serve no biological function. Yet, insights from transcriptional biochemistry, population genetics and functional genomics suggest that rather than segregating into 'functional' or 'non-functional', TFBS inputs to their target genes may be generally cumulative, with varying degrees of potency and redundancy. As TFBS redundancy can be diminished by mutations and environmental stress, some of the apparently 'spurious' sites may turn out to be important for maintaining adequate transcriptional regulation under these conditions. This has significant implications for interpreting the phenotypic effects of TFBS mutations, particularly in the context of genome-wide association studies for complex traits. © 2014 The Author. Bioessays published by WILEY Periodicals, Inc. Source


Okkenhaug K.,Babraham Institute
Annual Review of Immunology | Year: 2013

Phosphoinositide 3-kinases (PI3Ks) control many important aspects of immune cell development, differentiation, and function. Mammals have eight PI3K catalytic subunits that are divided into three classes based on similarities in structure and function. Specific roles for the class I PI3Ks have been broadly investigated and are relatively well understood, as is the function of their corresponding phosphatases. More recently, specific roles for the class II and class III PI3Ks have emerged. Through vertebrate evolution and in parallel with the evolution of adaptive immunity, there has been a dramatic increase not only in the genes for PI3K subunits but also in genes for phosphatases that act on 3-phosphoinositides and in 3-phosphoinositide-binding proteins. Our understanding of the PI3Ks in immunity is guided by fundamental discoveries made in simpler model organisms as well as by appreciating new adaptations of this signaling module in mammals in general and in immune cells in particular. © Copyright 2013 by Annual Reviews. All rights reserved. Source

Discover hidden collaborations