Entity

Time filter

Source Type

Cluj-Napoca, Romania

The Babeș-Bolyai University , in Cluj-Napoca, is a public university in Romania. With more than 39,000 students, it is the largest university in the country. The Babeș-Bolyai University offers study programmes in Romanian, Hungarian, German, English, and French. The university was named after prominent scientists from Transylvania: the Romanian bacteriologist Victor Babeș and the Hungarian mathematician János Bolyai.In the 2012 QS World University Rankings, it was included in Top 700 universities of the world. Another three Romanian universities have entered the prestigious top. Wikipedia.


Cormos C.-C.,Babes - Bolyai University
International Journal of Hydrogen Energy | Year: 2010

Integrated Gasification Combined Cycle (IGCC) is a power generation technology in which the solid feedstock is partially oxidized with oxygen and steam to produce syngas. In a conventional IGCC design without carbon capture, the syngas is purified for dust and hydrogen sulphide removal and then sent to a Combined Cycle Gas Turbine (CCGT) for power generation. Carbon capture technologies are expected to play an important role in the coming decades for reducing the greenhouse gas emissions. In a modified IGCC design for carbon capture, the syngas is catalytically shifted to maximize the hydrogen level and to concentrate the carbon species in the form of carbon dioxide which can be later captured in a pre-combustion arrangement. After carbon dioxide capture, the hydrogen-rich syngas can be either purified in a Pressure Swing Adsorption (PSA) unit and exported to the external customers (e.g., chemical industry, PEM fuel cells) or used in a CCGT for power generation. This paper investigates the most important energy and process integration issues for hydrogen and electricity co-production scheme based on coal gasification process with carbon capture and storage (CCS). The evaluated coal-based IGCC case produces around 400 MW net electricity and has a flexible hydrogen output in the range of 0-200 MW (LHV) with a 90% carbon capture rate. The principal focus of the paper is on the evaluation of energy integration aspects so as to maximize the overall plant energy efficiency. Optimization includes heat and power integration of the main plant sub-systems (e.g., integration of steam generated in gasification island, with the requirements for syngas treatment, power generation in the combined cycle, best use of PSA tail gas in the power block, heat and power demand for acid gas removal unit, integration of air separation unit and gas turbine compressor etc.), sensitivity analysis (e.g., influence on ambient conditions). © 2010 Professor T. Nejat Veziroglu. Source


Cormos C.-C.,Babes - Bolyai University
International Journal of Hydrogen Energy | Year: 2012

This paper investigates the potential use of renewable energy sources (various sorts of biomass) and solid wastes (municipal wastes, sewage sludge, meat and bone meal etc.) in a co-gasification process with coal to co-generate hydrogen and electricity with carbon capture and storage (CCS). The paper underlines one of the main advantages of gasification technology, namely the possibility to process lower grade fuels (lower grade coals, renewable energy sources, solid wastes etc.), which are more widely available than the high grade coals normally used in normal power plants, this fact contributing to the improvement of energy security supply. Based on a proposed plant concept that generates 400-500 MW net electricity with a flexible output of 0-200 MW th hydrogen and a carbon capture rate of at least 90%, the paper develops fuel selection criteria for coal blending with various alternative fuels for optimizing plant performance e.g. oxygen consumption, cold gas efficiency, hydrogen production and overall energy efficiency. The key plant performance indicators were calculated for a number of case studies through process flow simulations (ChemCAD). © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights. Source


Extensive molecular dynamics simulations of the flow of aqueous NaCl and NaI solutions through carbon nanotubes are presented, evidencing the dependence of diverse transport features on the solute specificity, the nanotube geometry, and the various atomic models employed, including polarizability. The simulated properties are in agreement with published results, indicating that ion translocation sets in only for nanotubes with chiralities higher than (7,7), and extend the explanation of the mechanisms governing ion transport to larger chiralities. The interpretation of the various dynamic quantities is developed in close connection with the structural details of the solution and the energy barriers the solute components have to overcome. Also, the role and relevance of water and ion polarizabilities are discussed in detail. © 2010 American Institute of Physics. Source


Cormos C.-C.,Babes - Bolyai University
International Journal of Hydrogen Energy | Year: 2011

IGCC is a power generation technology in which the solid feedstock is partially oxidized to produce syngas. In a modified IGCC design for carbon capture, there are several technological options which are evaluated in this paper. The first two options involve pre-combustion arrangements in which syngas is processed, either by shift conversion or chemical looping, to maximise the hydrogen level and to concentrate the carbon species as CO2. After CO2 capture by gas-liquid absorption or chemical looping, the hydrogen-rich gas is used for power generation. The third capture option is based on post-combustion arrangement using chemical absorption. Investigated coal-based IGCC case studies produce 400-500 MW net power with more than 90% carbon capture rate. Principal focus of the paper is concentrated on evaluation of key performance indicators for investigated carbon capture options, the influence of various gasifiers on carbon capture process, optimisation of energy efficiency by heat and power integration, quality specification of captured CO2. The capture option with minimal energy penalty is based on chemical looping, followed by pre-combustion and post-combustion. © 2010, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. Source


Cormos C.-C.,Babes - Bolyai University
International Journal of Hydrogen Energy | Year: 2011

This paper analyzes innovative processes for producing hydrogen from fossil fuels conversion (natural gas, coal, lignite) based on chemical looping techniques, allowing intrinsic CO2 capture. This paper evaluates in details the iron-based chemical looping system used for hydrogen production in conjunction with natural gas and syngas produced from coal and lignite gasification. The paper assesses the potential applications of natural gas and syngas chemical looping combustion systems to generate hydrogen. Investigated plant concepts with natural gas and syngas-based chemical looping method produce 500 MW hydrogen (based on lower heating value) covering ancillary power consumption with an almost total decarbonisation rate of the fossil fuels used. The paper presents in details the plant concepts and the methodology used to evaluate the performances using critical design factors like: gasifier feeding system (various fuel transport gases), heat and power integration analysis, potential ways to increase the overall energy efficiency (e.g. steam integration of chemical looping unit into the combined cycle), hydrogen and carbon dioxide quality specifications considering the use of hydrogen in transport (fuel cells) and carbon dioxide storage in geological formation or used for EOR. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights. Source

Discover hidden collaborations