Beverly, MA, United States
Beverly, MA, United States

Axcelis Technologies, Inc. is an American company engaging in the design, manufacture, and servicing of capital equipment for the semiconductor manufacturing industry worldwide. It produces ion implantation systems, including high and medium current implanters, and high energy implanters, and curing systems used in the fabrication of semiconductor chips. The company was incorporated in 1995 and is headquartered in Beverly, Massachusetts, United States.In 2000, Eaton Corporation spun off its semiconductor manufacturing equipment business as Axcelis Technologies.On Dec. 4, 2012 Axcelis Technologies decided "...that it will exit the dry-strip business and divest its dry-strip intellectual property and technology, including the advanced non-oxidizing process technology of its Integra product line, to Lam Research,...Axcelis will continue to ship its 300 mm dry-strip products through August 2013..." Wikipedia.


Time filter

Source Type

Patent
Axcelis Technologies | Date: 2015-08-04

An ion implantation system has a process chamber having a process environment, and an ion implantation apparatus configured to implant ions into a workpiece supported by a chuck within the process chamber. A load lock chamber isolates the process (vacuum) environment from an atmospheric environment, wherein a load lock workpiece support supports the workpiece therein. An isolation chamber is coupled to the process chamber with a pre-implant cooling environment defined therein. An isolation gate valve selectively isolates the pre-implant cooling environment from the process environment wherein the isolation chamber comprises a pre-implant cooling workpiece support for supporting and cooling the workpiece. The isolation gate valve is the only access path for the workpiece to enter and exit the isolation chamber. A pressurized gas selectively pressurizes the pre-implant cooling environment to a pre-implant cooling pressure that is greater than the process pressure for expeditious cooling of the workpiece. A workpiece transfer arm transfer the workpiece between the load lock chamber, isolation chamber, and chuck. A controller controls the workpiece transfer arm selectively cools the workpiece to a pre-implant cooling temperature in the isolation chamber at the pre-implant cooling pressure via a control of the isolation gate valve, pre-implant cooling workpiece support, and pressurized gas source.


Patent
Axcelis Technologies | Date: 2016-11-04

An ion source has an arc chamber having a body defining and interior region. A liner defined an exposure surface of the interior region that is exposed to a plasma generated within the arc chamber. An electrode has a shaft with a first diameter that passes through the body and the liner. The electrode is electrically isolated from the body where the liner is a plate having a first surface with an optional recess having a second surface. A hole is defined through the recess for the shaft to pass through. The hole has a second diameter that is larger than the first diameter, and an annular gap exists between the plate and the shaft. The plate has a lip extending from the second surface toward the first surface that surrounds the hole within the recess and generally prevents particulate contaminants from entering the annular gap.


Patent
Axcelis Technologies | Date: 2016-12-27

An ion implantation apparatus, system, and method are provided for transferring a plurality of workpieces between vacuum and atmospheric pressures, wherein an alignment mechanism is operable to align a plurality of workpieces for generally simultaneous transportation to a dual-workpiece load lock chamber. The alignment mechanism comprises a characterization device, an elevator, and two vertically-aligned workpiece supports for supporting two workpieces. First and second atmospheric robots are configured to generally simultaneously transfer two workpieces at a time between load lock modules, the alignment mechanism, and a FOUP. Third and fourth vacuum robots are configured to transfer one workpiece at a time between the load lock modules and a process module.


Patent
Axcelis Technologies | Date: 2017-01-19

An ion source has an arc chamber having an arc chamber body. An electrode extends into an interior region of the arc chamber body, and a cathode shield has a body that is cylindrical having an axial hole. The axial hole is configured to pass the electrode therethrough. First and second ends of the body have respective first and second gas conductance limiters. The first gas conductance limiter extends from an outer diameter of the body and has a U-shaped lip. The second gas conductance limiter has a recess for a seal to protect the seal from corrosive gases and maintain an integrity of the seal. A gas source introduces a gas to the arc chamber body. A liner has an opening configured to pass the cathode shield therethrough, where the liner has a recess. A gap is defined between the U-shaped lip and the liner, wherein the U-shaped lip reduces a conductance of gas into the gap and the recess further reduces conductance of gas into the region.


Patent
Axcelis Technologies | Date: 2017-01-19

An optics plate for an ion implantation system, the optics plate comprising a pair of aperture assemblies. Each pair of aperture assemblies respectively comprises a first aperture member, a second aperture member; and an aperture fastener, wherein the aperture fastener fastens the first aperture member to the second aperture member. An aperture tip may be also fastened to the second aperture member. One or more of the first aperture member, second aperture member, aperture tip, and aperture fastener is made of one or more of a refractory metal, tungsten, lanthanated tungsten alloy, yttrium tungsten alloy, and/or graphite and silicon carbide. The aperture assemblies may define an extraction electrode assembly, a ground electrode assembly, or other electrode assembly in the ion implantation system. The aperture fastener may be a screw and a bevel washer. The first aperture member may be operably coupled to a base plate via an aperture assembly fastener.


A workpiece clamping status detection system and method for detecting a clamping state of a clamping device is provided. A clamping device having a clamping surface is configured to selectively clamp a workpiece to the clamping surface. The clamping device may be an electrostatic chuck or a mechanical clamp for selectively securing a semiconductor wafer thereto. A vibration-inducing mechanism is further provided, wherein the vibration-inducing mechanism is configured to selectively vibrate one or more of the clamping device and workpiece. A vibration-sensing mechanism is also provided, wherein the vibration-sensing mechanism is configured to detect the vibration of the one or more of the clamping device and workpiece. Detection of clamping status utilizes changes in acoustic properties, such as a shift of natural resonance frequency or acoustic impedance, to determine clamping condition of the workpiece. A controller is further configured to determine a clamping state associated with the clamping of the workpiece to the clamping surface, wherein the clamping state is associated with the detected vibration of the one or more of the clamping device and workpiece.


Patent
Axcelis Technologies | Date: 2015-09-16

A system and method for clamping a workpiece to an electrostatic clamp (ESC) comprises placing a first workpiece on a surface of the ESC and applying a first set of clamping parameters to the ESC, therein clamping the first workpiece to the surface of the ESC with a first clamping force. A degree of clamping of the workpiece to the ESC is determined and the application of the first set of clamping parameters to the ESC is halted based on a process recipe. A second set of clamping parameters is applied to the ESC after halting the application of the first set of clamping parameters to the ESC, and the workpiece is removed from the surface of the ESC concurrent with the application of the second set of clamping parameters to the ESC when the degree of clamping of the workpiece to the ESC is less than or approximately equal to a threshold clamping value. The second set of clamping parameters to the ESC is further halted after removing the workpiece from the surface of the ESC.


Patent
Axcelis Technologies | Date: 2015-12-22

A system and method are provided for implanting ions at low energies into a workpiece. An ion source configured to generate an ion beam is provided, wherein a mass resolving magnet is configured to mass resolve the ion beam. The ion beam may be a ribbon beam or a scanned spot ion beam. A mass resolving aperture positioned downstream of the mass resolving magnet filters undesirable species from the ion beam. A combined electrostatic lens system is positioned downstream of the mass analyzer, wherein a path of the ion beam is deflected and contaminants are generally filtered out of the ion beam, while concurrently decelerating and parallelizing the ion beam. A workpiece scanning system is further positioned downstream of the combined electrostatic lens system, and is configured to selectively translate a workpiece in one or more directions through the ion beam, therein implanting ions into the workpiece.


Patent
Axcelis Technologies | Date: 2015-12-22

A combined scanning and focusing magnet for an ion implantation system is provided. The combined scanning and focusing magnet has a yoke having a high magnetic permeability. The yoke defines a hole configured to pass an ion beam therethrough. One or more scanner coils operably are coupled to the yoke and configured to generate a time-varying predominantly dipole magnetic field when electrically coupled to a power supply. One or more focusing coils are operably coupled to the yoke and configured to generate a predominantly multipole magnetic field, wherein the predominantly multipole magnetic field is one of static or time-varying.


An ion implantation system employs a mass analyzer for both mass analysis and angle correction. An ion source generates an ion beam along a beam path. A mass analyzer is located downstream of the ion source that performs mass analysis and angle correction on the ion beam. A resolving aperture within an aperture assembly is located downstream of the mass analyzer component and along the beam path. The resolving aperture has a size and shape according to a selected mass resolution and a beam envelope of the ion beam. An angle measurement system is located downstream of the resolving aperture and obtains an angle of incidence value of the ion beam. A control system derives a magnetic field adjustment for the mass analyzer according to the angle of incidence value of the ion beam from the angle measurement system.

Loading Axcelis Technologies collaborators
Loading Axcelis Technologies collaborators