San Jose, CA, United States
San Jose, CA, United States
SEARCH FILTERS
Time filter
Source Type

A method of fabricating an electronic device includes providing a III-V substrate having a hexagonal crystal structure and a normal to a growth surface characterized by a misorientation from the <0001> direction of between 0.15 and 0.65. The method also includes growing a first III-V epitaxial layer coupled to the III-V substrate and growing a second III-V epitaxial layer coupled to the first III-V epitaxial layer. The method further includes forming a first contact in electrical contact with the III-V substrate and forming a second contact in electrical contact with the second III-V epitaxial layer.


A semiconductor device includes a III-nitride substrate having a first conductivity type and a first electrode electrically coupled to the III-nitride substrate. The semiconductor device also includes a III-nitride material having a second conductivity type coupled to the III-nitride substrate at a regrowth interface and a p-n junction disposed between the III-nitride substrate and the regrowth interface.


Patent
Avogy Inc | Date: 2015-10-26

A semiconductor structure includes a III-nitride substrate characterized by a first conductivity type and having a first side and a second side opposing the first side, a III-nitride epitaxial layer of the first conductivity type coupled to the first side of the III-nitride substrate, and a plurality of III-nitride epitaxial structures of a second conductivity type coupled to the III-nitride epitaxial layer. The semiconductor structure further includes a III-nitride epitaxial formation of the first conductivity type coupled to the plurality of III-nitride epitaxial structures, and a metallic structure forming a Schottky contact with the III-nitride epitaxial formation and coupled to at least one of the plurality of III-nitride epitaxial structures.


A vertical JFET includes a GaN substrate comprising a drain of the JFET and a plurality of patterned epitaxial layers coupled to the GaN substrate. A distal epitaxial layer comprises a first part of a source channel and adjacent patterned epitaxial layers are separated by a gap having a predetermined distance. The vertical JFET also includes a plurality of regrown epitaxial layers coupled to the distal epitaxial layer and disposed in at least a portion of the gap. A proximal regrown epitaxial layer comprises a second part of the source channel. The vertical JFET further includes a source contact passing through portions of a distal regrown epitaxial layer and in electrical contact with the source channel, a gate contact in electrical contact with a distal regrown epitaxial layer, and a drain contact in electrical contact with the GaN substrate.


Grant
Agency: Department of Energy | Branch: ARPA-E | Program: SBIR | Phase: Phase II | Award Amount: 1.50M | Year: 2013

In this abstract the development of vertical power transistors utilizing bulk GaN substrates with breakdown voltages of 1200V or higher, normally-off operation, and a drain current rating of 100A is proposed. These devices will feature vertical current flow, avalanche ruggedness, and a wide operating temperature range (-55 to 150°C). The target specific on-resistance for the transistor is 30x lower than the best-in-class Si MOSFETs and its switching frequency more than 10x faster than state-of-the art IGBTs. Cost parity with silicon devices will be achieved in three years using a two prong approach. Firstly, the bulk GaN substrate price will be reduced by: (i) using a scalable ammonothermal substrate technology, (ii) enabling commercially available substrates obtained from the epitaxial lift-off process, and (iii) driving the price of GaN substrates down along with the solid-state LED lighting industry. Secondly, manufacturing cost will be reduced by predominantly using legacy silicon fabrication equipment in the Avogy facility in San Jose, CA. The transistor and technology performance metrics will be verified by an independent testing facility. Also, in this proposal gate drivers will be developed for these vertical transistors to replace existing MOSFETs and IGBTs. Finally, commercialization partners will evaluate devices and gate drives in power conversion applications.


A method of growing a III-nitride-based epitaxial structure is disclosed. The method includes forming a GaN-based drift layer coupled to the GaN-based substrate, where forming the GaN-based drift layer comprises doping the drift layer with indium to cause the indium concentration of the drift layer to be less than about 110^(16 )cm^(3 )and to cause the carbon concentration of the drift layer to be less than about 110^(16 )cm^(3). The method also includes forming an n-type channel layer coupled to the GaN-based drift layer, forming an n-contact layer coupled to the GaN-based drift layer, and forming a second electrical contact electrically coupled to the n-contact layer.


A variable output power supply includes a power unit comprising a housing including an output port, one or more accessories disposed in the housing, and a controller disposed in the housing and in communication with the output port. The variable output power supply also includes a power cable. The controller is operable to modify operation of the output port in response, at least in part, to insertion of the power cable in the output port.


A semiconductor structure includes a GaN substrate with a first surface and a second surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. A first electrode is electrically coupled to the second surface of the GaN substrate. The semiconductor structure further includes a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the GaN substrate and a second GaN layer of a second conductivity type coupled to the first GaN epitaxial layer. The first GaN epitaxial layer comprises a channel region. The second GaN epitaxial layer comprises a gate region and an edge termination structure. A second electrode coupled to the gate region and a third electrode coupled to the channel region are both disposed within the edge termination structure.


A vertical III-nitride field effect transistor includes a drain comprising a first III-nitride material, a drain contact electrically coupled to the drain, and a drift region comprising a second III-nitride material coupled to the drain. The field effect transistor also includes a channel region comprising a third III-nitride material coupled to the drain and disposed adjacent to the drain along a vertical direction, a gate region at least partially surrounding the channel region, having a first surface coupled to the drift region and a second surface on a side of the gate region opposing the first surface, and a gate contact electrically coupled to the gate region. The field effect transistor further includes a source coupled to the channel region and a source contact electrically coupled to the source. The channel region is disposed between the drain and the source along the vertical direction such that current flow during operation of the vertical III-nitride field effect transistor is along the vertical direction, and the channel region extends along at least a portion of the second surface of the gate region.


An embodiment of a vertical power device includes a III-nitride substrate, a drift region coupled to the III-nitride substrate and comprising a III-nitride material of a first conductivity type, and a channel region coupled to the drift region and comprising a III-nitride material of the first conductivity type. The vertical power device also includes a source region coupled to the channel region and comprising a III-nitride material of the first conductivity type, and a gate region coupled to the channel region. The gate region includes a III-nitride material of a second conductivity type. The vertical power device further includes a source-coupled region coupled to the drift region and electrically connected with the source region. The source-coupled region includes a III-nitride material of the second conductivity type.

Loading Avogy Inc collaborators
Loading Avogy Inc collaborators