Avl Powertrain Engineering

Plymouth, MI, United States

Avl Powertrain Engineering

Plymouth, MI, United States

Time filter

Source Type

Patent
Avl Powertrain Engineering | Date: 2016-08-24

A waste heat recovery system for an engine is disclosed. In one example, the waste heat recovery system includes an expander, a first heat exchanger system, and a second heat exchanger system. The expander is configured to convert waste heat from a working fluid into mechanical energy. The first heat exchanger system is in fluid communication with the expander, the first heat exchanger system disposed upstream of the expander. The second heat exchanger system is in fluid communication with the expander and is disposed upstream of the expander and arranged in parallel with the first heat exchanger system.


Patent
Avl Powertrain Engineering | Date: 2017-04-13

A two-speed transmission for a vehicle is provided including a planetary gear set selectively coupling an input shaft and an output shaft. The planetary gear set is configured to provide two forward gear ratios and neutral. The planetary gear set includes at least one sun gear, at least one pinion in meshing engagement with the sun gear, at least one ring gear meshingly engaged with the pinion, and a carrier. The carrier supports the pinion and is connected to the output shaft such that rotation of the carrier drives the output shaft. The two-speed transmission also includes one or more elements that rotatably couple different combinations of the sun gear, the pinion, the ring gear, the input shaft, and the carrier with one another or a ground. Such elements may include combinations of clutches, brakes, and dog clutches.


Patent
Avl Powertrain Engineering | Date: 2016-02-23

A turbo-compounding system may include a first turbine, a turbocharger, a bypass passageway and a valve. The first turbine may include an inlet in fluid communication with an exhaust manifold and an outlet in fluid communication with a fluid passageway. The first turbine may be drivingly coupled to an engine. The turbocharger includes a first compressor and a second turbine. The first compressor receives an intake fluid at a first pressure and discharges the intake fluid at a second pressure. The second turbine may drive the first compressor and receive exhaust gas from the fluid passageway downstream of the outlet of the first turbine. The bypass passageway may include a first end fluidly coupled with the engine exhaust manifold and a second end fluidly coupled with the fluid passageway downstream from the first turbine and upstream of the second turbine. The valve controls fluid-flow through the bypass passageway.


Patent
Avl Powertrain Engineering | Date: 2016-02-23

An engine assembly including a cylinder wall extending about a cylinder bore is disclosed. A piston slidingly received within the cylinder bore includes a ring groove extending about the piston in a ring plane that is transverse to a longitudinal axis of the cylinder bore. A piston ring is received in the ring groove of the piston. A port extends through the cylinder wall to communicate fluid to or from the cylinder bore. The port has an oblique geometry relative to the ring plane and a plurality of windows that extend at least partially about the cylinder bore in a path that is transverse to the ring plane. The oblique geometry of the port staggers entry and exit of the piston ring relative to the plurality of windows as the piston reciprocates within the cylinder bore. This helps prevent the piston ring from clipping the port.


Patent
Avl Powertrain Engineering | Date: 2016-02-23

A system according to the present disclosure controls first and second fuel injectors to inject fuel into a cylinder of an engine based on a measured crankshaft position. The system controls the first and second fuel injectors based on a first target injection parameter once every N firing cycles of the cylinder, where N is equal to the number of fuel injectors that are operable to inject fuel into the cylinder. The first target injection parameter includes at least one of a first pulse width and a first start-of-injection (SOI) timing. The system controls the first and second fuel injectors based on a second target injection parameter once every N firing cycles of the cylinder. The second target injection parameter includes at least one of a second pulse width and a second SOI timing that are different than the first pulse width and the first SOI timing, respectively.


Patent
Avl Powertrain Engineering | Date: 2016-02-23

A cylinder liner with improved cooling and strength is disclosed. The cylinder liner includes a liner wall extending annularly about a piston bore. The liner wall has an inner face adjacent the piston bore and an outer face oppositely arranged relative to the inner face. The outer face includes a water jacket surface that is co-extensive with at least part of the outer face. A plurality of indentations are disposed along the water jacket surface of the liner wall. The plurality of indentations extend radially inwardly from the water jacket surface to define corresponding areas in the liner wall of compacted material. Accordingly, the plurality of indentations increase surface area of the water jacket surface to improve heat transfer away from the liner wall while also increasing hoop strength of the liner wall.


Patent
Avl Powertrain Engineering | Date: 2016-02-23

An example of a cylinder liner according to the present disclosure includes a first portion having a first end and a second end and a second portion having a first end and a second end. The second portion is separate from the first portion and the second end of the first portion overlays the first end of the second portion. The first portion and the second portion are configured to receive a piston slideably disposed within the first portion and the second portion.


Patent
Avl Powertrain Engineering | Date: 2016-08-31

An opposed piston engine may include a first housing, first and second pistons, and first, second, and third fuel injector nozzles. The first housing may define a first passage extending along a first longitudinal axis. The first and second pistons may be slidably disposed within the first passage. The first, second, and third fuel injector nozzles may be in fluid communication with the first passage. At least one of the first, second, and third fuel injector nozzles may be angularly offset from another one of the first, second, and third fuel injector nozzles by an oblique angle about the first longitudinal axis.


Patent
Avl Powertrain Engineering | Date: 2016-08-31

An opposed-piston engine assembly is disclosed including a first cylinder liner containing a pair of first pistons that move toward one another in one mode of operation and away from one another in another mode of operation. The pistons are coupled to first and second crankshafts. Multiple block segments arranged in a side-by-side abutting relationship form the engine block including a first outboard segment, a first inboard segment, a second inboard segment, and a second outboard segment. Tensile members extend through the block segments tying them together as one structural unit. The first and second inboard segments abut one another at a seam and include bores that cooperate to receive the first cylinder liner. The first cylinder liner includes a liner support collar that is received in counter-bores defined by the first and second inboard segments at the seam between the first and second inboard segments.


Patent
Avl Powertrain Engineering | Date: 2016-08-31

A clutch assembly that is less prone to overheating is disclosed. The clutch assembly includes a clutch housing, a shaft, and a clutch pack. The clutch pack includes a backing plate, an applied plate, a plurality of friction plates, and a plurality of reaction plates. A primary actuator applies pressure to the applied plate to longitudinally compress the entire clutch pack and couple rotation of the clutch housing and the shaft. A secondary actuator applies pressure to at least one plate in the plurality of friction plates and the plurality of reaction plates to longitudinally move the at least one plates independently of the applied plate. This relieves some of the torque transmitted across the clutch pack adjacent the applied plate and reduces localized temperature spikes in the clutch pack adjacent to the applied plate.

Loading Avl Powertrain Engineering collaborators
Loading Avl Powertrain Engineering collaborators