Time filter

Source Type

Aachen, Germany

Toenges-Schuller N.,AVISO GmbH | Schneider C.,AVISO GmbH | Niederau A.,AVISO GmbH | Vogt R.,Ford Motor Company | Birmili W.,Leibniz Institute for Tropospheric Research
Atmospheric Environment | Year: 2015

An aerosol box model and a gas-phase chemistry box model were coupled to simulate particle number (PN) concentrations, both solid and volatile, in a typical street canyon with a high traffic volume in Germany. The simulation accounts for emission, nucleation and aerosol aging processes while dilution is parameterised by a simple two-stage process. Calculations were performed for the years 2010, 2015, 2020 and 2025, and for a vehicle fleet consisting of electric vehicles only ("electric mobility"). Projections including a high fraction of Euro-6 vehicles in the fleet suggest that PN emissions will reduce by 90% in 2025 compared to 2010. Ambient PN concentrations are, however, expected to reduce by merely 29% over the same period. Apart from contributions of urban background air, reductions in primary particles are partially offset by secondary particle formation by nucleating exhaust gases. In the "electric mobility" scenario omitting tailpipe emissions, PN concentrations are expected to reduce by 60% from 2010 to 2025. For an aerosol assumed to be mixed externally only, PN of elemental carbon (EC) was calculated to reduce by 76% from 2010 to 2025, in the "electric mobility" scenario by 87%. Overall, the contribution of solid PN emissions from gasoline vehicles to PN concentration in the street canyon is expected to be approximately 4% in 2025. © 2015 Elsevier Ltd.

Choi J.H.,Massachusetts Institute of Technology | Choi J.H.,Whitehead Institute For Biomedical Research | Choi J.H.,Singapore MIT Alliance for Research and Technology | Ogunniyi A.O.,Massachusetts Institute of Technology | And 4 more authors.
Biotechnology Progress | Year: 2010

Microfabricated devices are useful tools for manipulating and interrogating large numbers of single cells in a rapid and cost-effective manner, but connecting these systems to the existing platforms used in routine high-throughput screening of libraries of cells remains challenging. Methods to sort individual cells of interest from custom microscale devices to standardized culture dishes in an efficient and automated manner without affecting the viability of the cells are critical. Combining a commercially available instrument for colony picking (CellCelector, AVISO GmbH) and a customized software module, we have established an optimized process for the automated retrieval of individual antibody-producing cells, secreting desirable antibodies, from dense arrays of subnanoliter containers. The selection of cells for retrieval is guided by data obtained from a high-throughput, single-cell screening method called microengraving. Using this system, 100 clones from a mixed population of two cell lines secreting different antibodies (12CA5 and HYB099-01) were sorted with 100% accuracy (50 clones of each) in ~2 h, and the cells retained viability. © 2010 American Institute of Chemical Engineers.

Discover hidden collaborations