Corvallis, OR, United States
Corvallis, OR, United States
SEARCH FILTERS
Time filter
Source Type

Kole R.,AVI Biopharma | Krainer A.R.,Cold Spring Harbor Laboratory | Altman S.,Yale University
Nature Reviews Drug Discovery | Year: 2012

Here, we discuss three RNA-based therapeutic technologies exploiting various oligonucleotides that bind to RNA by base pairing in a sequence-specific manner yet have different mechanisms of action and effects. RNA interference and antisense oligonucleotides downregulate gene expression by inducing enzyme-dependent degradation of targeted mRNA. Steric-blocking oligonucleotides block the access of cellular machinery to pre-mRNA and mRNA without degrading the RNA. Through this mechanism, steric-blocking oligonucleotides can redirect alternative splicing, repair defective RNA, restore protein production or downregulate gene expression. Moreover, they can be extensively chemically modified to acquire more drug-like properties. The ability of RNA-blocking oligonucleotides to restore gene function makes them best suited for the treatment of genetic disorders. Positive results from clinical trials for the treatment of Duchenne muscular dystrophy show that this technology is close to achieving its clinical potential. © 2012 Macmillan Publishers Limited. All rights reserved.


Patent
AVI Biopharma | Date: 2011-07-20

A method and conjugate for selectively killing antigen-activated T cells are disclosed. The conjugate is composed of a substantially uncharged antisense compound targeted against the human cFLIP protein, and a reverse TAT (rTAT) polypeptide coupled covalently to the antisense compound. The rTAT polypeptide is effective to produce selective uptake of the conjugate into antigen-activated T cells, relative to the uptake of the conjugate into non-activated T cells. The cFLIP antisense compound causes activation induced cell death (AICD) of activated lymphocytes. The method is useful in treating transplantation rejection and autoimmune conditions.


Patent
AVI Biopharma | Date: 2011-11-17

Oligonucleotide analogues conjugated to carrier peptides are provided. The disclosed compounds are useful for the treatment of various diseases, for example diseases where inhibition of protein expression or correction of aberrant mRNA splice products produces beneficial therapeutic effects.


Patent
AVI Biopharma | Date: 2011-08-03

A method and antisense compound for inhibiting the growth of pathogenic bacterial cells are disclosed. The compound contains no more than 12 nucleotide bases and has a targeting nucleic acid sequence of no fewer than 10 bases in length that is complementary to a target sequence containing or within 10 bases, in a downstream direction, of the translational start codon of a bacterial mRNA that encodes a bacterial protein essential for bacterial replication. The compound binds to a target mRNA with a T_(m) of between 50C to 60C. The relatively short antisense compounds are substantially more active than conventional antisense compounds having a targeting base sequence of 15 or more bases.


The present invention provides antisense antiviral compounds, compositions, and methods of their use and production, mainly for inhibiting the replication of viruses of the Filoviridae family, including Ebola and Marburg viruses. The compounds, compositions, and methods also relate to the treatment of viral infections in mammals including primates by Ebola and Marburg viruses. The antisense antiviral compounds include phosphorodiamidate morpholino oligonucleotides (PMOplus) having a nuclease resistant backbone, about 15-40 nucleotide bases, at least two but typically no more than half piperazine-containing intersubunit linkages, and a targeting sequence that is targeted against the AUG start site region of Ebola virus VP35, Ebola virus VP24, Marburg virus VP24, or Marburg virus NP, including combinations and mixtures thereof


Patent
AVI Biopharma | Date: 2014-05-28

The invention is directed to a compound having the structure:


Patent
AVI Biopharma | Date: 2011-05-13

Provided are antisense oligonucleotides and other agents that target and modulate IL-17 and/or IL-23 signaling activity in a cell, compositions that comprise the same, and methods of use thereof. Also provided are animal models for identifying agents that modulate 17 and/or IL-23 signaling activity.


A therapeutic oligomer-peptide conjugate, and methods of using the conjugate are disclosed. The conjugate includes (a) a substantially uncharged oligonucleotide analog compound having a base sequence that includes a string of bases that are complementary to four or more contiguous cytosine bases in a target nucleic acid region to which the compound is intended to bind, and (b) conjugated to the compound, an arginine-rich peptide effective to enhance the uptake of the compound into target cells. The string of bases in the compound includes at least one inosine base positioned in the string so as to limit the number of contiguous guanine bases in said string to three or fewer. The conjugate has greater cellular uptake than the compound alone, by virtue of the arginine-rich peptide, and substantially greater antisense activity greater activity than the conjugate in the absence of inosine-for guanine substitutions.


Patent
AVI Biopharma | Date: 2011-08-26

An antisense compound for use in treating myotonic dystrophy DM1 or DM2, a method of enhancing antisense targeting to heart and quadricep muscles, and a method for treating DM1 or DM2 in a mammalian subject are disclosed. The oligonucleotide has 8-30 bases, with at least 8 contiguous bases being complementary to the polyCUG or polyCCUG repeats in the 3UTR region of dystrophia myotonica protein kinase (DMPK) mRNA in DM1 or DM2, respectively. Conjugated to the oligonucleotide is a cell-penetrating peptide having the sequence (RXRR(B/X)R)_(2)XB, where R is arginine; B is -alanine; and each X is C(O)(CH_(2))_(n)NH, where n is 4-6. The antisense compound is effective to selectively block the sequestration of muscleblind-like 1 protein (MBNL1) and/or CUGBP, in heart and quadricep muscle in a myotonic dystrophy animal model.


Patent
AVI Biopharma | Date: 2011-03-11

Provided are antisense oligonucleotides and other agents that target and modulate nuclear hormone receptors (NHRs) such as the glucocorticoid receptor (GR), compositions that comprise the same, and methods of use thereof.

Loading AVI Biopharma collaborators
Loading AVI Biopharma collaborators