Time filter

Source Type

Muslewski L.,University of Technology and Life Sciences in Bydgoszcz | Slezak M.,Automotive Industry Institute | Szubartowski M.,Karor Sp.j.
Journal of Konbin | Year: 2013

Collisions are inseparably connected with road traffic. Driving a mechanical vehicle requires not only a good knowledge of traffic rules and appropriate skills but also physical and psychical fitness. The road system consists of three basic elements such as: road, vehicle and human. From the point of view of safety of the executed transport process this is the human who plays the most important role in it. They need to have the ability of quick situation estimation and providing proper response to it involving performance of right maneuvers and adjusting them to a given situation. Studying transportation systems it should be remembered that the role of a human plays in them is of different character. They may be drivers, passengers or belong to the environment. Thus, their behavior has a large influence on the transportation system safe functioning including both public and individual transport. Source

The paper provides some information regarding comprehensive evaluation of the environmental hazard caused by the operation of automotive vehicles with internal combustion (IC) engines powered by bioethanol fuel. It presents the assumptions made for the life cycle assessment (LCA) of the environmental impact of fuel, carried out according to the Well-to-Wheel (WtW) method, where the fuel preparation stage, including the acquisition of raw materials as well as the production, transport, and distribution processes, and the vehicle operation stage are taken into account. The technologies and raw materials used to make bioethanol of the first and second generation have been presented and compared with each other. Results of research on greenhouse gas (GHG) emissions and non-renewable energy input in the process of preparation of bioethanol fuels of the first and second generation have been analysed. Nine versions of the production process, differing from each other in the process methods used and the types of the biomass processed, have been examined. Source

Girtler J.,Technical University of Gdansk | Slezak M.,Automotive Industry Institute
Eksploatacja i Niezawodnosc | Year: 2013

The properties of semi-Markov processes have been generally characterized and the applicability of the theory of such processes to the determining of the reliability of motor cars and other road vehicles has been explained. A formal description of the process of changes in the motor vehicle technical states considered as reliability states and a model of this process in the form of a one-dimensional stochastic process have been presented. The values of this process are the technical states of the motor vehicle in question that have significant practical importance. A four-state set of states interpreted as follows has been adopted: full (complete) serviceability, partial (incomplete) serviceability,task-limiting serviceability,and complete (total) unserviceability. Based on the initial distribution adopted and the functional matrix worked out, the boundary distribution of the process of changes in the technical (reliability) states of the motor vehicle has been defined. The probability of the vehicle being fully serviceable has been considered a measure of the vehicle reliability for a long period of vehicle operation. A possibility of defining the vehicle reliability in the form of a probability that a task would also be fulfilled by the vehicle being partially serviceable has also been indicated. Source

Lasocki J.,Warsaw University of Technology | Kolodziejczyk K.,POLMAX S.A. S.K.A | Matuszewska A.,Automotive Industry Institute
Polish Journal of Environmental Studies | Year: 2015

The use of organic residues and waste for production of biogas as an energy source is a viable option for waste management and reduction of greenhouse gas emissions. However, before any eventual utilization of biogas, hydrogen sulfide (H2S) and carbon dioxide (CO2) must be removed since those contaminants are highly undesirable in combustion systems. This work deals with the construction and examination of a laboratoryscale, low-cost test stand for quick evaluation of the existing and new methods for H2S and CO2 removal from biogas. The test stand consists of two sections: one based on absorption in liquid phase (barbotage process) and the other adsorption in a bed of solid reagent. Seven different reagents of various concentrations were used in the experiment: sodium hydroxide (NaOH), ethylene glycol (EG), ethanoloamine (EA), diethanoloamine (DEA), and distilled water (H2O) in the barbotage section of the test stand, and bog iron ore (BIO) and activated carbon (AC) in the adsorption column. In the absorption tests, treating biogas with 1M NaOH solution and 100% EA resulted in complete removal of H2S and CO2. For 100% DEA, high H2S and moderate CO2 absorption efficiency were achieved. EG and H2O allowed the removal of H2S only to a very limited extent. Both reagents used in the tests with adsorption in a bed, BIO and AC, were able to eliminate H2S from biogas, but practically did not change the concentration of CO2. © 2015, Pol. J. Environ. Stud. All Rights Reserved. Source

Dauber J.,Johann Heinrich Von Thunen Institute | Brown C.,James Hutton Institute | Fernando A.L.,New University of Lisbon | Finnan J.,Teagasc | And 8 more authors.
BioRisk | Year: 2012

The increasing demand for biomass for the production of bioenergy is generating land-use conflicts. These conflicts might be solved through spatial segregation of food/feed and energy producing areas by continuing producing food on established and productive agricultural land while growing dedicated energy crops on so called "surplus" land. Ambiguity in the definition and characterization of surplus land as well as uncertainty in assessments of land availability and of future bioenergy potentials is causing confusion about the prospects and the environmental and socio-economic implications of bioenergy development in those areas. The high level of uncertainty is due to environmental, economic and social constraints not yet taken into account and to the potentials offered by those novel crops and their production methods not being fully exploited. This paper provides a scientific background in support of a reassessment of land available for bioenergy production by clarifying the terminology, identifying constraints and options for an efficient bioenergy-use of surplus land and providing policy recommendations for resolving conflicting land-use demands. A serious approach to factoring in the constraints, combined with creativity in utilizing the options provided, in our opinion, would lead to a more sustainable and efficient development of the bioenergy sector. Unless the sustainability challenge is mastered, the interdependent policy objectives of mitigating climate change, obtaining independence from fossil fuels, feeding and fuelling a growing human world population and maintaining biodiversity and ecosystem services will not be met. Despite the advanced developments of bioenergy, we still see regional solutions for designing and establishing sustainable bioenergy production systems with optimized production resulting in social, economic and ecological benefits. Where bioenergy production has been identified as the most suitable option to overcome the given problems of energy security and climate change mitigation, we need to determine which bioenergy cultivation systems are most suitable for the respective types of surplus land, by taking into account issues such as yields, inputs and costs, as well as potential environmental and socio-economic impacts. © Jens Dauber et al. Source

Discover hidden collaborations