Time filter

Source Type

Wiener Neustadt, Austria

The Austrian Academy of science is a legal entity under the special protection of the Republic of Austria. According to the statutes of the Academy its mission is to promote the science and humanities in every respect and in every field, particularly in fundamental research. In 2009, the Austrian Academy of science was ranked 82nd among the 300 topmost research institutions in the world, based on its internet presence, by Webometrics Ranking of World Research Centers . Wikipedia.

Barlow D.P.,Austrian Academy of Sciences
Annual Review of Genetics | Year: 2011

Genomic imprinting is an epigenetic process leading to parental-specific expression of one to two percent of mammalian genes that offers one of the best model systems for a molecular analysis of epigenetic regulation in development and disease. In the twenty years since the first imprinted gene was identified, this model has had a significant impact on decoding epigenetic information in mammals. So far it has led to the discovery of long-range cis-acting control elements whose epigenetic state regulates small clusters of genes and of unusual macro noncoding RNAs (ncRNAs) that directly repress genes in cis, and critically, it has demonstrated that one biological role of DNA methylation is to allow expression of genes normally repressed by default. This review describes the progress in understanding how imprinted protein-coding genes are silenced; in particular, it focuses on the role of macro ncRNAs that have broad relevance as a potential new layer of regulatory information in the mammalian genome. © 2011 by Annual Reviews. All rights reserved.

Hammerer K.,Austrian Academy of Sciences | Sorensen A.S.,Copenhagen University | Polzik E.S.,Copenhagen University
Reviews of Modern Physics | Year: 2010

During the past decade the interaction of light with multiatom ensembles has attracted much attention as a basic building block for quantum information processing and quantum state engineering. The field started with the realization that optically thick free space ensembles can be efficiently interfaced with quantum optical fields. By now the atomic ensemble-light interfaces have become a powerful alternative to the cavity-enhanced interaction of light with single atoms. Various mechanisms used for the quantum interface are discussed, including quantum nondemolition or Faraday interaction, quantum measurement and feedback, Raman interaction, photon echo, and electromagnetically induced transparency. This review provides a common theoretical frame for these processes, describes basic experimental techniques and media used for quantum interfaces, and reviews several key experiments on quantum memory for light, quantum entanglement between atomic ensembles and light, and quantum teleportation with atomic ensembles. The two types of quantum measurements which are most important for the interface are discussed: homodyne detection and photon counting. This review concludes with an outlook on the future of atomic ensembles as an enabling technology in quantum information processing. © 2010 The American Physical Society.

Ameres S.L.,Austrian Academy of Sciences | Zamore P.D.,Howard Hughes Medical Institute
Nature Reviews Molecular Cell Biology | Year: 2013

MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future. © 2013 Macmillan Publishers Limited. All rights reserved.

Bock C.,Austrian Academy of Sciences
Nature reviews. Genetics | Year: 2012

DNA methylation is an epigenetic mark that has suspected regulatory roles in a broad range of biological processes and diseases. The technology is now available for studying DNA methylation genome-wide, at a high resolution and in a large number of samples. This Review discusses relevant concepts, computational methods and software tools for analysing and interpreting DNA methylation data. It focuses not only on the bioinformatic challenges of large epigenome-mapping projects and epigenome-wide association studies but also highlights software tools that make genome-wide DNA methylation mapping more accessible for laboratories with limited bioinformatics experience.

Rabl P.,Austrian Academy of Sciences
Physical Review Letters | Year: 2011

We analyze the photon statistics of a weakly driven optomechanical system and discuss the effect of photon blockade under single-photon strong coupling conditions. We present an intuitive interpretation of this effect in terms of displaced oscillator states and derive analytic expressions for the cavity excitation spectrum and the two-photon correlation function g(2)(0). Our results predict the appearance of nonclassical photon correlations in the combined strong coupling and sideband resolved regime and provide a first detailed understanding of photon-photon interactions in strong coupling optomechanics. © 2011 American Physical Society.

Discover hidden collaborations