Entity

Time filter

Source Type

Melbourne, Australia

The Australian Synchrotron is a 3 GeV synchrotron radiation facility built in Melbourne, Victoria and opened on 31 July 2007.The circular building was designed by Architectus in conjunction with Thiess, while the lattice design was performed substantially by Professor John Boldeman. The Synchrotron building is located in Clayton near the Monash University Clayton Campus.The Australian Synchrotron is a light source facility . It uses particle accelerators to produce a beam of high energy electrons which are placed within a storage ring that circulates the electrons to create synchrotron light. The light is directed down separate beamlines at the end of which may be placed a variety of experimental equipment contained within the endstations. Wikipedia.


Morgan K.S.,Monash University | Paganin D.M.,Monash University | Siu K.K.W.,Monash University | Siu K.K.W.,Australian Synchrotron
Applied Physics Letters | Year: 2012

We present a simple x-ray phase imaging method that utilizes the sample-induced distortion of a high contrast random intensity pattern to quantitatively retrieve the two-dimensional phase map at the exit surface of a coherently illuminated sample. This reference pattern is created by placing a sheet of sandpaper in the x-ray beam, with the sample-induced distortion observed after propagation to the detector, a meter downstream. Correlation analysis comparing a single "sample and sandpaper" image to a reference "sandpaper only" image produces two sensitive differential phase contrast images, giving the sample phase gradient in vertical and horizontal directions. These images are then integrated to recover the projected phase depth of the sample. The simple experimental set-up, retention of flux, and the need for only a single sample image per reconstruction suggest that this method is of value in imaging a range of dynamic processes at both synchrotron and laboratory x-ray sources. © 2012 American Institute of Physics. Source


De Jonge M.D.,Australian Synchrotron | Vogt S.,Argonne National Laboratory
Current Opinion in Structural Biology | Year: 2010

Hard X-ray fluorescence microscopy is well-suited to in-situ investigations of trace metal distributions within whole, unstained, biological tissue, with sub-parts-per-million detection achievable in whole cells. The high penetration of X-rays indicates the use of X-ray fluorescence tomography for structural visualization, and recent measurements have realised sub-500-nm tomography on a 10-μm cell. Limitations of present approaches impact the duration of an experiment and imaging fidelity. Developments in X-ray resolution, detector speed, cryogenic environments, and the incorporation of auxiliary signals are being pursued within the synchrotron community. Several complementary approaches to X-ray fluorescence tomography will be routinely available to the biologist in the near future. We discuss these approaches and review applications of biological relevance. © 2010 Elsevier Ltd. Source


Lintern M.,CSIRO | Anand R.,CSIRO | Ryan C.,University of Melbourne | Paterson D.,Australian Synchrotron
Nature Communications | Year: 2013

Eucalyptus trees may translocate Au from mineral deposits and support the use of vegetation (biogeochemical) sampling in mineral exploration, particularly where thick sediments dominate. However, biogeochemistry has not been routinely adopted partly because biotic mechanisms of Au migration are poorly understood. For example, although Au has been previously measured in plant samples, there has been doubt as to whether it was truly absorbed rather than merely adsorbed on the plant surface as aeolian contamination. Here we show the first evidence of particulate Au within natural specimens of living biological tissue (not from laboratory experimentation). This observation conclusively demonstrates active biogeochemical adsorption of Au and provides insight into its behaviour in natural samples. The confirmation of biogeochemical adsorption of Au, and of a link with abiotic processes, promotes confidence in an emerging technique that may lead to future exploration success and maintain continuity of supply. © 2013 Macmillan Publishers Limited. All rights reserved. Source


Schuettfort T.,University of Cambridge | Watts B.,Paul Scherrer Institute | Thomsen L.,Australian Synchrotron | Lee M.,Kookmin University | And 2 more authors.
ACS Nano | Year: 2012

We utilize near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and scanning transmission X-ray microscopy (STXM) to study the microstructure and domain structure of polycrystalline films of the semiconducting polymer poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Total electron yield NEXAFS spectroscopy is used to examine the surface structure of the first 1-2 molecular layers, while bulk-sensitive STXM is used to produce maps of domain orientation and order sampled through the entire film thickness. We study different phases of PBTTT including as-cast, terraced and nanoribbon morphologies produced via spin-coating as well as aligned films of as-cast and nanoribbon morphologies produced by zone-casting. For the terraced morphology, domains are observed that are larger than the size of the terraced surface features, and the calculated degree of order is reduced compared to the nanoribbon morphology. For zone-cast films, we find that, although little optical anisotropy is observed in the bulk of as-cast films, a high degree of surface structural anisotropy is observed with NEXAFS spectroscopy, similar to what is observed in annealed nanoribbon films. This observation indicates that the aligned surface structure in unannealed zone-cast films templates the bulk ordering of the aligned nanoribbon phase. STXM domain mapping of aligned nanoribbon films reveals elongated, micrometer-wide domains with each domain misoriented with respect to its neighbor by up to 45°, but with broad domain boundaries. Within each nanoribbon domain, a high degree of X-ray dichroism is observed, indicating correlated ordering throughout the bulk of the film. © 2012 American Chemical Society. Source


Salentinig S.,Monash Institute of Pharmaceutical Sciences | Phan S.,Monash Institute of Pharmaceutical Sciences | Khan J.,Monash Institute of Pharmaceutical Sciences | Hawley A.,Australian Synchrotron | Boyd B.J.,Monash Institute of Pharmaceutical Sciences
ACS Nano | Year: 2013

Nature's own emulsion, milk, consists of nutrients such as proteins, vitamins, salts, and milk fat with primarily triglycerides. The digestion of milk fats is the key to the survival of mammal species, yet it is surprising how little we understand this process. The lipase-catalyzed hydrolysis of dietary fats into fatty acids and monoglyceride is essential for efficient absorption of the fat by the enterocytes. Here we report the discovery of highly ordered geometric nanostructures during the digestion of dairy milk. Transitions from normal emulsion through a variety of differently ordered nanostructures were observed using time-resolved small-angle X-ray scattering on a high-intensity synchrotron source and visualized by cryogenic transmission electron microscopy. Water and hydrophilic molecules are transferred into the lipid phase of the milk particle, turning the lipid core gradually into a more hydrophilic environment. The formation of highly ordered lipid particles with substantial internal surface area, particularly in low-bile conditions, may indicate a compensating mechanism for maintenance of lipid absorption under compromised lipolysis conditions. © 2013 American Chemical Society. Source

Discover hidden collaborations