Entity

Time filter

Source Type

Clayton South, Australia

Mosse W.K.J.,Australian Pulp and Paper Institute | Boger D.V.,Monash University | Simon G.P.,Monash University | Garnier G.,Australian Pulp and Paper Institute
Langmuir | Year: 2012

The interaction between cellulose fibers in the presence of cationic polyacrylamide (CPAM) was analyzed by rheology as a function of polyelectrolyte concentration, charge density, and molecular weight. CPAM was found to strongly influence the yield stress of cellulose suspensions; low doses of CPAM increased the yield stress, but at higher concentrations the yield stress declined. The charge density of the CPAM was the most significant factor in how yield stress responded to CPAM concentration; this effect was able to be normalized to a master curve by considering only the charged fraction of the polymer. The molecular weight of CPAM samples had some effect at high concentrations, but for lower CPAM doses the yield stress was independent of molecular weight over the range studied. The data suggest that CPAM modifies the interaction between cellulose surfaces via several mechanisms, with electrostatic interactions in the form of charge neutralization and charged patch formation dominating; polymer bridging and steric repulsion also influence the overall balance of forces between interacting cellulose fibers. © 2012 American Chemical Society. Source


Khan M.S.,Australian Pulp and Paper Institute | Thouas G.,Monash University | Thouas G.,University of Melbourne | Shen W.,Australian Pulp and Paper Institute | And 2 more authors.
Analytical Chemistry | Year: 2010

Agglutinated blood transports differently onto paper than stable blood with well dispersed red cells. This difference was investigated to develop instantaneous blood typing tests using specific antibody-antigen interactions to trigger blood agglutination. Two series of experiments were performed. The first related the level of agglutination and the fluidic properties of blood on its transport in paper. Blood samples were mixed at different ratios with specific and nonspecific antibodies; a droplet of each mixture was deposited onto a filter paper strip, and the kinetics of wicking and red cell separation were measured. Agglutinated blood phase separated, with the red blood cells (RBC) forming a distinct spot upon contact with paper while the plasma wicked; in contrast, stable blood suspensions wicked uniformly. The second study analyzed the wicking and the chromatographic separation of droplets of blood deposited onto paper strips pretreated with specific and nonspecific antibodies. Drastic differences in transport occurred. Blood agglutinated by interaction with one of its specific antibodies phase separated, causing a chromatographic separation. The red cells wicked very little while the plasma wicked at a faster rate than the original blood sample. Blood agglutination and wicking in paper followed the concepts of colloids chemistry. The immunoglobin M antibodies agglutinated the red blood cells by polymer bridging, upon selective adsorption on the specific antigen at their surface. The transport kinetics was viscosity controlled, with the viscosity of red cells drastically increasing upon blood agglutination. Three arm prototypes were investigated for single-step blood typing. © 2010 American Chemical Society. Source

Discover hidden collaborations