Australian Institute for Bioengineering and Nanotechnology and

Australian, Australia

Australian Institute for Bioengineering and Nanotechnology and

Australian, Australia
Time filter
Source Type

Muller D.A.,University of Queensland | Depelsenaire A.C.,Australian Institute for Bioengineering and Nanotechnology and | Young P.R.,University of Queensland
The Journal of infectious diseases | Year: 2017

Infection with any of the 4 dengue virus serotypes results in a diverse range of symptoms, from mild undifferentiated fever to life-threatening hemorrhagic fever and shock. Given that dengue virus infection elicits such a broad range of clinical symptoms, early and accurate laboratory diagnosis is essential for appropriate patient management. Virus detection and serological conversion have been the main targets of diagnostic assessment for many years, however cross-reactivity of antibody responses among the flaviviruses has been a confounding issue in providing a differential diagnosis. Furthermore, there is no single, definitive diagnostic biomarker that is present across the entire period of patient presentation, particularly in those experiencing a secondary dengue infection. Nevertheless, the development and commercialization of point-of-care combination tests capable of detecting markers of infection present during different stages of infection (viral nonstructural protein 1 and immunoglobulin M) has greatly simplified laboratory-based dengue diagnosis. Despite these advances, significant challenges remain in the clinical management of dengue-infected patients, especially in the absence of reliable biomarkers that provide an effective prognostic indicator of severe disease progression. This review briefly summarizes some of the complexities and issues surrounding clinical dengue diagnosis and the laboratory diagnostic options currently available. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail:

Hedir G.G.,University of Warwick | Bell C.A.,University of Warwick | Bell C.A.,Australian Institute for Bioengineering and Nanotechnology and | Bell C.A.,University of Queensland | And 2 more authors.
Biomacromolecules | Year: 2015

The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers' molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by 1H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods. © 2015 American Chemical Society.

PubMed | Queensland Brain Institute, Australian Institute for Bioengineering and Nanotechnology and, University of Wisconsin - Medical School, University of Sheffield and 4 more.
Type: Journal Article | Journal: The Journal of neuroscience : the official journal of the Society for Neuroscience | Year: 2015

Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recycling synaptic vesicles, it is unclear which compartment facilitates this transport. Using live-cell confocal and single-molecule imaging of rat hippocampal neurons cultured in microfluidic devices, we show that the activity-dependent uptake of the binding domain of the BoNT/A heavy chain (BoNT/A-Hc) is followed by a delayed increase in retrograde axonal transport of BoNT/A-Hc carriers. Consistent with a role of presynaptic activity in initiating transport of the active toxin, activity-dependent uptake of BoNT/A in the terminal led to a significant increase in SNAP25 cleavage detected in the soma chamber compared with nonstimulated neurons. Surprisingly, most endocytosed BoNT/A-Hc was incorporated into LC3-positive autophagosomes generated in the nerve terminals, which then underwent retrograde transport to the cell soma, where they fused with lysosomes both in vitro and in vivo. Blocking autophagosome formation or acidification with wortmannin or bafilomycin A1, respectively, inhibited the activity-dependent retrograde trafficking of BoNT/A-Hc. Our data demonstrate that both the presynaptic formation of autophagosomes and the initiation of their retrograde trafficking are tightly regulated by presynaptic activity.

PubMed | Australian Institute for Bioengineering and Nanotechnology and
Type: Journal Article | Journal: Stem cells translational medicine | Year: 2014

Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction.

Loading Australian Institute for Bioengineering and Nanotechnology and collaborators
Loading Australian Institute for Bioengineering and Nanotechnology and collaborators