Time filter

Source Type

Northfield, MN, United States

MacLaren R.,Aurora Pharmaceutical | Reynolds P.M.,Aurora University | Allen R.R.,Peak Statistical Services
JAMA Internal Medicine | Year: 2014

IMPORTANCE Histamine-2 receptor antagonists (H2RAs) and proton pump inhibitors (PPIs) are commonly used to prevent gastrointestinal tract (GI) hemorrhage in critically ill patients. The stronger acid suppression of PPIs may reduce the rate of bleeding but enhance infectious complications, specifically pneumonia and Clostridium difficile infection (CDI). OBJECTIVE To evaluate the occurrence and risk factors for GI hemorrhage, pneumonia, and CDI in critically ill patients. DESIGN, SETTING, AND PARTICIPANTS A pharmacoepidemiological cohort studywas conducted of adult patients requiring mechanical ventilation for 24 hours or more and administered either an H2RA or PPI for 48 hours or more while intubated across 71 hospitals between January 1, 2003, and December 31, 2008. Propensity score-adjusted and propensity-matched multivariate regression models were used to control for confounders. MAIN OUTCOMES AND MEASURES Primary outcomeswere secondary diagnoses of International Classification of Diseases, Ninth Revision (ICD-9)-coded GI hemorrhage, pneumonia, and CDI occurring 48 hours or more after initiating invasive ventilation. RESULTS Of 35 312 patients, 13 439 (38.1%) received H2RAs and 21 873 (61.9%) received PPIs. Gastrointestinal hemorrhage (2.1% vs 5.9%; P < .001), pneumonia (27%vs 38.6%; P < .001), and CDI (2.2%vs 3.8%; P < .001) occurred less frequently in the H2RA group. After adjusting for propensity score and covariates, odds ratios of GI hemorrhage (2.24; 95%CI, 1.81-2.76), pneumonia (1.2; 95%CI, 1.03-1.41), and CDI (1.29; 95%CI, 1.04-1.64) were greater with PPIs. Similar results were obtained in the propensity-matched models of 8799 patients in each cohort. CONCLUSIONS AND RELEVANCE Proton pump inhibitors are associated with greater risks of GI hemorrhage, pneumonia, and CDI than H2RAs in mechanically ventilated patients. Numerous other risk factors are apparent. These data warrant confirmation in comparative prospective studies. Copyright © 2014 American Medical Association. All rights reserved. Source

The prevalence of type 2 diabetes mellitus is high among the elderly population. Treatment of elderly patients with type 2 diabetes presents challenges because of co-morbidities and the potential increase in the risk of adverse effects. Hyperlipidaemia is also common in the elderly population. Glucose- and lipid-lowering treatment in elderly patients should be individualized on the basis of the patients life expectancy, health status and cardiovascular risk factors, and evidence-based guideline recommendations. Because elderly patients often have impaired renal and hepatic function, careful considerations must be made when selecting appropriate glucose- and lipid-lowering therapy. There are a number of potential safety issues associated with various glucose- and lipid-lowering therapies that are relevant to elderly patients, including increased risk of heart failure exacerbations, weight loss, increased risk of hypoglycaemia, increased risk of myopathy, and contraindications of some agents in patients with hepatic or renal impairment. The bile acid sequestrant colesevelam HCl is unique compared with other glucose- and lipid-lowering therapies because it is the only product approved by the US Food and Drug Administration, as an adjunct to diet and exercise, to lower both glucose and low-density lipoprotein cholesterol (LDL-C) in adults with type 2 diabetes and primary hyperlipidaemia, respectively. Furthermore, colesevelam has been shown to have similar glucose- and lipid-lowering efficacy in patients aged <65 years and those aged ≥65 years. Colesevelam was not associated with weight gain, was associated with a low incidence of hypoglycaemia, and can be safely combined with a broad range of glucose-lowering agents (metformin, sulfonylureas and insulin) and lipid-lowering statins. Currently, colesevelam is available in tablet form and as a powder for oral suspension formulation; the latter may be of benefit to elderly patients with swallowing difficulties. As colesevelam has both glucose- and lipid-lowering effects, its use may reduce the drug burden in elderly patients receiving multiple agents for glucose and lipid lowering. Colesevelam may be a valuable treatment option as an add-on to existing glucose- andor lipid-lowering therapy to help improve haemoglobin A1c and to lower LDL-C levels in elderly patients with type 2 diabetes and primary hyperlipidaemia. Adis © 2012 Springer International Publishing AG. All rights reserved. Source

Kiser J.J.,Aurora Pharmaceutical | Burton J.R.,Aurora University | Everson G.T.,Aurora University
Nature Reviews Gastroenterology and Hepatology | Year: 2013

The emergence of direct-acting antiviral agents (DAAs) for HCV infection represents a major advance in treatment. The NS3 protease inhibitors, boceprevir and telaprevir, were the first DAAs to receive regulatory approval. When combined with PEG-IFN and ribavirin, these agents increase rates of sustained virologic response in HCV genotype 1 to ∼70%. However, this treatment regimen is associated with several toxicities. In addition, both boceprevir and telaprevir are substrates for and inhibitors of the drug transporter P-glycoprotein and the cytochrome P450 enzyme 3A4 and are, therefore, prone to clinically relevant drug interactions. Several new DAAs for HCV are in late stages of clinical development and are likely to be approved in the near future. These include the protease inhibitors, simeprevir and faldaprevir, the NS5A inhibitor, daclatasvir, and the nucleotide polymerase inhibitor, sofosbuvir. Herein, we review the clinical pharmacology and drug interactions of boceprevir, telaprevir and these investigational DAAs. Although boceprevir and telaprevir are involved in many interactions, these interactions are manageable if health-care providers proactively identify and adjust treatments. Emerging DAAs seem to have a reduced potential for drug interactions, which will facilitate their use in the treatment of HCV. © 2013 Macmillan Publishers Limited. Source

Petrash J.M.,Aurora Pharmaceutical
Investigative Ophthalmology and Visual Science | Year: 2013

Reduced quality of life and financial burden due to visual impairment and blindness begin to increase dramatically when individuals reach the age of 40. The major causes of agerelated vision loss can be traced to changes to the structure and function of the lens, one of the tissues responsible for focusing light on the retina. Age-related nuclear cataracts, which are caused by aggregation and condensation of proteins, diminish vision because they impede the transmission and focusing of light on the retina. In addition to the slowdeveloping age-related form, cataracts often develop rapidly as a complication of ocular surgery, such as following vitrectomy or as a consequence of vitreous gel degeneration. Posterior capsular opacification, which can develop following cataract removal, is caused by proliferation and inappropriate accumulation of lens epithelial cells on the surfaces of intraocular lenses and the posterior lens capsule. Presbyopia is a loss of accommodative amplitude and reduced ability to shift focus from far to near objects. Onset of presbyopia is associated with an increase in lens hardness and reduced ability of the lens to change shape in response to ciliary muscle contraction. Avenues of promising research that seek to delay or prevent these causes of low vision are discussed in light of our current understanding of disease pathogenesis and some challenges that must be met to achieve success. © The Association for Research in Vision and Ophthalmology, Inc. Source

Heit C.,Aurora Pharmaceutical
Sub-cellular biochemistry | Year: 2013

Ethanol consumption has effects on the central nervous system (CNS), manifesting as motor incoordination, sleep induction (hypnosis), anxiety, amnesia, and the reinforcement or aversion of alcohol consumption. Acetaldehyde (the direct metabolite of ethanol oxidation) contributes to many aspects of the behavioral effects of ethanol. Given acetaldehyde cannot pass through the blood brain barrier, its concentration in the CNS is primarily determined by local production from ethanol. Catalase and cytochrome P450 2E1 (CYP2E1) represent the major enzymes in the CNS that catalyze ethanol oxidation. CYP2E1 is expressed abundantly within the microsomes of certain brain cells and is localized to particular brain regions. This chapter focuses on the discussion of CYP2E1 in ethanol metabolism in the CNS, covering topics including how it is regulated, where it is expressed and how it influences sensitivity to ethanol in the brain. Source

Discover hidden collaborations