Manassas, VA, United States

Time filter

Source Type

Patent
Aurora Flight Sciences Corporation | Date: 2016-12-22

The present invention is directed to methods of determining a vessel-relative off-deck waypoint (VRODW) location comprising the steps of providing an aircraft in flight; determining vessel range and vessel bearing relative the aircraft; and determining the VRODW location using the range and bearing measurements of the vessel. The present invention is further directed to methods of landing an aircraft on a vessel.


Patent
Aurora Flight Sciences Corporation | Date: 2016-12-22

An autonomous vehicle is improved with a navigational system having both cameras and echolocation sensors, each including overlapping fields of view. The cameras and echolocation sensors may be part of an optical and echolocation system, respectively, that may work in conjunction with a global positioning system to determine a course for the autonomous vehicle to reach an objective while detecting and avoid obstacles along the course.


Grant
Agency: National Aeronautics and Space Administration | Branch: | Program: STTR | Phase: Phase II | Award Amount: 749.90K | Year: 2015

After successfully demonstrating the basic functionality of a damage-detecting, self-healing 'smart' material system in Phase I, Aurora and UMass Lowell aim to advance the material technology to a TRL 5 in Phase II. The team will use their 'smart' material system to design and manufacture various scaled-up core-stiffened composite specimens in application-appropriate geometries, and subsequently test the specimens in a simulated operational environment that includes hypervelocity impact to simulate MMOD impacts, and thermal cycling to represent the large temperature gradients in space. Aurora and UMass Lowell will automate the resistive heating process by relying on changes in the flow of heat through the material as measured by sending electrical current through the structure and monitoring using infrared thermography. Based on the extent of damage, additional heat can be automatically triggered to accelerate healing. The team will consider the integration of the 'smart' material into a larger system in Phase II, including the storage of fluid within the honeycomb core cells to re-fill micro-channels. Vertically aligned carbon nanotubes (VACNTs) from N12 Technologies, Inc. will be continuously transfer-printed onto the carbon fiber prepreg slit tape and spooled for automated fiber placement (AFP). When laid down by AFP, the VACNTs will "stitch" adjacent layers together to reinforce the interlaminar region and improve the damage tolerance of the overall structure with a negligible increase in weight and thickness. At the end of Phase II, the team will work with NASA Langley Research Center's new Integrated Structural Assembly of Advanced Composites facility to manufacture a scaled pressure vessel that will be damaged via hypervelocity impact multiple times to evaluate its self-healing performance. This scaled demonstration will enable the team to define further scale-up requirements and make cost and performance predictions for subsequent development phases.


Patent
Aurora Flight Sciences Corporation | Date: 2016-10-12

An aerial vehicle having a vision based navigation system for capturing an arresting cable situated at a landing site may comprise a fuselage having a propulsion system; an arresting device coupled to the fuselage, the arresting device to capture the arresting cable at the landing site; a camera situated on the aerial vehicle; an infrared illuminator situated on the aerial vehicle to illuminate the landing site, wherein the arresting cable has two infrared reflectors situated thereon; and an onboard vision processor. The onboard vision processor may (i) generate a plurality of coordinates representing features of the landing site using an image thresholding technique, (ii) eliminate one or more coordinates as outlier coordinates using linear correlation, and (iii) identify two of the plurality of coordinates as the two infrared reflectors using a Kalman filter.


Patent
Aurora Flight Sciences Corporation | Date: 2016-10-12

A capturing hook for engaging a cable during capture and release of an aerial vehicle may comprise a first and second gate pivotally supported at their first ends by a base portion and each being movable between a closed position and an open position, but spring-biased to the closed position. The capturing hook may further include a latch device comprising a movable locking part biased by a return spring to a locked position to lock the second gate in the closed position.


Patent
Aurora Flight Sciences Corporation | Date: 2016-10-12

An aerial vehicle landing station comprising a first post and a second post, wherein the second post is spaced apart from the first post and a cable to capture an aerial vehicle, wherein the cable is stretched between the first post and the second post and configured to support the weight of the aerial vehicle once captured and the cable may provide a charging current to the aerial vehicle once captured. One or more markers may be further positioned on the cable to designate a landing point, wherein the one or more markers are configured to be visually tracked by the aerial vehicle. A cable management device coupled to the cable via one or more pulleys may regulate tension of the cable. A communications transceiver at the aerial vehicle landing station may wirelessly communicate data with the aerial vehicle.


Patent
Aurora Flight Sciences Corporation | Date: 2016-04-21

The present invention is directed to a solar-powered aircraft comprising a fixed wing panel, a motor driven propeller, a plurality of secondary wing panels, and a tail assembly having a first tail panel and a second tail panel. Each secondary wing panel being configured to rotate about a first longitudinal pivot axis extending from a distal end of the fixed wing panel through a central transverse portion of the secondary wing panel. The secondary wing panels may comprise an array of solar panels on its surface. The first tail panel comprises a second array of solar panels located on a surface of the first tail panel, the first tail panel being configured to rotate about a second longitudinal pivot axis through a central transverse portion of the first tail panel.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase II | Award Amount: 999.99K | Year: 2015

Aurora Flight Sciences and the Lockheed Martin Sippican propose to develop a new propulsion system to increase the top speed of an EMATT (Expendable Mobile ASW Training Target) vehicle to 14 knots. Aurora and Lockheed will leverage the vehicle concepts developed in Phase I to downselect critical propulsion components and generate a preliminary design to integrate the high-speed propulsion system into the existing EMATT and assess thermal management techniques. Aurora and Lockheed will develop a safe, high energy-density battery that provides sufficient power and capacity to meet the sprint speed power requirements. Aurora will size a high-efficiency motor matched to a novel, optimized propeller design which will ensure efficient operation across the range of EMATT operating speeds. Improvements in motor efficiency and power density will be achieved through novel thermal management techniques. Bench-level testing will be performed to validate the performance of the motor, propeller, and battery. Risk reduction activities, such as shaft-seal design and testing will be performed. A detailed design for the high-speed propulsion system will be completed by the end of the Phase II base period. During the Phase II Option, Aurora and Lockheed will fabricate and test an EMATT Sprint-Speed demonstration vehicle.


Grant
Agency: National Aeronautics and Space Administration | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 749.93K | Year: 2016

A major market for vertical lift aircraft is in urban operations, primarily for police and electronic news gathering (typically a Bell 206 or a Eurocopter AS350). Manned systems are more costly to operate and have a much larger operational footprint than their unmanned counterparts. But the unmanned multirotor does not have the range and endurance to compete with the manned systems. Aurora Flight Sciences believes that the Passive Miller Cycle (PMC) Series Hybrid System is a viable way to achieve the range and endurance required to penetrate the manned vehicle market. The PMC, like the typical Miller Cycle, uses delayed intake valve timing that allows the expansion ratio to be greater than the compression ratio; reducing pumping losses and giving greater energy extraction. But the PMC does not use a positive displacement supercharger. The delayed intake valve closing also allows the PMC greater quench in the combustion chamber to confront the fuel droplet issue associated with small engines. The delayed valve timing also allows the generator in the hybrid system to be optimized for power generation while still being used as the engine starter. Based on the models developed in the Phase I program, Aurora will design, procure, and integrate the components required to demonstrate the Passive Miller Cycle (PMC) in a series hybrid architecture. The test system will be used to calibrate Phase I models and design a multirotor using the PMC hybrid system that will be able to perform police and news gathering missions.


Grant
Agency: National Aeronautics and Space Administration | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 124.98K | Year: 2016

Over the last 25 years, UAS have proven to be very valuable tools for performing a wide range of operations such as environmental disaster relief, search and rescue operations, wildfire suppression, multi-robot planetary exploration, Intelligence, Surveillance, and Reconnaissance (ISR), precision agriculture, and weather forecasting. Envisioned missions often involve executing several different activities, sometimes simultaneously, where agents (Unmanned air, sea surface, or ground vehicle) must coordinate and interact with each other to perform the requisite tasks. Agents within these networked teams are usually heterogeneous, possessing different resources and capabilities, and some agents are better suited to handle certain types of tasks than others ? this leads to different roles and responsibilities within the mission. In other scenarios, independent vehicles, each with their own goals, must operate in the same space without interfering with one another . Ensuring proper coordination and collaboration between different agents is crucial to efficient and successful operations, motivating the development of autonomous planning methods for heterogeneous networked teams. Reducing the necessity for perfect communication is also critical. Since operations involve dynamic environments, with situational awareness and underlying models changing rapidly as new information is acquired, so planning strategies must be computationally efficient to adjust solutions in real time. We propose to develop the Tool for Collaborative Autonomy (TCA) that will provide an automated planning capability that routes assets to optimize overall airspace utilization (e.g. in traffic management scenarios) or operational effectiveness (e.g. in cooperative scenarios), and to ensure spatial and temporal deconfliction/synchronization of the team under dynamically changing environments while considering cost factors (e.g. fuel and time), available resources and network constraints.

Loading Aurora Flight Sciences Corporation collaborators
Loading Aurora Flight Sciences Corporation collaborators