Audubon Aquarium of the Americas

New Orleans, LA, United States

Audubon Aquarium of the Americas

New Orleans, LA, United States
SEARCH FILTERS
Time filter
Source Type

News Article | March 11, 2017
Site: www.techtimes.com

The Audubon Aquarium in New Orleans recently welcomed a new guest, a minor sea otter from Monterey, California, which was rescued. According to a statement from the Audubon Nature Institute, the female sea otter is 18 months old and arrived at the institution on Wednesday, March 8, in the evening. She has got a new companion, an 8-year old sea otter named Clara who is a present resident of Audubon's 25,000 gallon sea otter habitation. "We are thrilled to be able to provide a new companion for Clara. Having the ability to care for this rescued otter, and support southern sea otter conservation with our partners," said Beth Firchau, Director of Animal Husbandry, Audubon Aquarium of the Americas. The Monterey Bay Aquarium's Sea Otter Research and Conservation (SORAC) program found the abandoned baby sea otter when she was only a day old in September 2015. The U.S. Fish and Wildlife Service Officials decided that the baby otter would not survive without having a home after their multiple failed attempts to send her back into the ocean, where she belongs. The baby otter traveled for almost a whole day just to arrive at her new home in New Orleans. The sea otter has a favorite toy, a red ball which she brought along to entertain herself during the long journey. No the baby otter does not have a name yet but will soon. Audubon Aquarium is arranging an online poll to offer visitors an opportunity to name the baby otter, which can be found on its official website. There are three name options that people can choose from - Ruby, Charley and Pearl. All the three names are related to renowned author and Monterey County resident John Steinbeck. The chosen name will be declared on the aquarium's official Facebook page and website on March 16. SORAC program is continuously researching and trying to rescue vulnerable otters of southern sea since 1984. It saves, treats, raises, releases or takes care of otters and also arranges scientific research. Although the prime focus of this program is southern sea otters but SORAC authority planned to study sea otters of Russia, Alaska and also southern California in association with the U.S. Geological Survey and several other scientists. Audubon is famous for its hard work and incredible care given by human to the sea otters, said Firchau. She also added that their collaboration with SORAS is very important for them to do their work properly. To get the chance of naming the otter, visit Audubon's Facebook page or Official website. To see the adorable otter playing with her ball, check out the video below. © 2017 Tech Times, All rights reserved. Do not reproduce without permission.


Hohn A.A.,National Oceanic and Atmospheric Administration | Thomas L.,University of St. Andrews | Carmichael R.H.,Dauphin Island Sea Laboratory | Carmichael R.H.,University of South Alabama | And 9 more authors.
Endangered Species Research | Year: 2017

The potential for stranded dolphins to serve as a tool for monitoring free-ranging populations would be enhanced if their stocks of origin were known. We used stable isotopes of carbon, nitrogen, and sulfur from skin to assign stranded bottlenose dolphins Tursiops truncatus to different habitats, as a proxy for stocks (demographically independent populations), following the Deepwater Horizon oil spill. Model results from biopsy samples collected from dolphins from known habitats (n = 205) resulted in an 80.5% probability of correct assignment. These results were applied to data from stranded dolphins (n = 217), resulting in predicted assignment probabilities of 0.473, 0.172, and 0.355 to Estuarine, Barrier Island (BI), and Coastal stocks, respectively. Differences were found west and east of the Mississippi River, with more Coastal dolphins stranding in western Louisiana and more Estuarine dolphins stranding in Mississippi. Within the Estuarine East Stock, 2 groups were identified, one predominantly associated with Mississippi and Alabama estuaries and another with western Florida. δ15N values were higher in stranded samples for both Estuarine and BI stocks, potentially indicating nutritional stress. High probabilities of correct assignment of the biopsy samples indicate predictable variation in stable isotopes and fidelity to habitat. The power of δ34S to discriminate habitats relative to salinity was essential. Stable isotopes may provide guidance regarding where additional testing is warranted to confirm demographic independence and aid in determining the source habitat of stranded dolphins, thus increasing the value of biological data collected from stranded individuals. © Outside the USA the US Government 2017.


Fauquier D.A.,National Oceanic and Atmospheric Administration | Litz J.,National Oceanic and Atmospheric Administration | Sanchez S.,University of Georgia | Colegrove K.,University of Illinois at Urbana - Champaign | And 22 more authors.
Endangered Species Research | Year: 2017

The potential role of morbillivirus was evaluated in the deaths of > 1100 bottlenose dolphins Tursiops truncatus and other small cetaceans that stranded from February 2010 through July 2014, during the northern Gulf of Mexico (GoM) unusual mortality event (UME). Morbillivirus analysis was carried out on 142 live or freshly dead cetaceans and results were combined with samples from 102 live, free-ranging bottlenose dolphins sampled during capture-release health assessments conducted from 2011 to 2014. Polymerase chain reaction (PCR) testing for morbillivirus showed that 9.9% (14/142) of the stranded cetaceans and 1% (1/83) of the free-ranging live dolphins were positive for dolphin morbilliviral (DMV) RNA. In contrast, previous DMV dolphin die-offs had DMV detectable by PCR in 61 to 97% of animals tested. Histologic findings consistent with morbillivirus infection, including lymphoid depletion, bronchointerstitial pneumonia, syncytial cell formation, or meningoencephalitis, were found in 6.6% (9/136) of the cetaceans that underwent histologic examinations. Serological analysis using a virus neutralization assay found that 29% (5/17) of live stranded and 23% (23/102) of live free-ranging bottlenose dolphins had titers of 64 or greater for cetacean morbillivirus, indicating prior but not necessarily recent exposure to morbillivirus. Current findings suggest that DMV infection, although present in the northern GoM, was sporadic and occurred at low levels and therefore was not the primary cause of the northern GoM UME. Confirmation of DMV infections and existing DMV titers demonstrate continued exposure to morbillivirus among northern GoM cetaceans since the first detection of this virus in the early 1990s. © Outside the USA the US Government 2017.


Venn-Watson S.,National Marine Mammal Foundation | Garrison L.,National Oceanic and Atmospheric Administration | Litz J.,National Oceanic and Atmospheric Administration | Fougeres E.,National Oceanic and Atmospheric Administration | And 11 more authors.
PLoS ONE | Year: 2015

A multi-year unusual mortality event (UME) involving primarily common bottlenose dolphins (Tursiops truncates) was declared in the northern Gulf of Mexico (GoM) with an initial start date of February 2010 and remains ongoing as of August 2014. To examine potential changing characteristics of the UME over time, we compared the number and demographics of dolphin strandings from January 2010 through June 2013 across the entire GoM as well as against baseline (1990-2009) GoM stranding patterns. Years 2010 and 2011 had the highest annual number of stranded dolphins since Louisiana's record began, and 2011 was one of the years with the highest strandings for both Mississippi and Alabama. Statewide, annual numbers of stranded dolphins were not elevated for GoM coasts of Florida or Texas during the UME period. Demographic, spatial, and temporal clusters identified within this UME included increased strandings in northern coastal Louisiana and Mississippi (March-May 2010); Barataria Bay, Louisiana (August 2010-December 2011); Mississippi and Alabama (2011, including a high prevalence and number of stranded perinates); and multiple GoM states during early 2013. While the causes of the GoM UME have not been determined, the location and magnitude of dolphin strandings during and the year following the 2010 Deepwater Horizon oil spill, including the Barataria Bay cluster from August 2010 to December 2011, overlap in time and space with locations that received heavy and prolonged oiling. There are, however, multiple known causes of previous GoM dolphin UMEs, including brevetoxicosis and dolphin morbillivirus. Additionally, increased dolphin strandings occurred in northern Louisiana and Mississippi before the Deepwater Horizon oil spill. Identification of spatial, temporal, and demographic clusters within the UME suggest that this mortality event may involve different contributing factors varying by location, time, and bottlenose dolphin populations that will be better discerned by incorporating diagnostic information, including histopathology. © 2015, Public Library of Science. All rights reserved.


Colegrove K.M.,University of Illinois at Urbana - Champaign | Venn-Watson S.,National Marine Mammal Foundation | Litz J.,National Oceanic and Atmospheric Administration | Kinsel M.J.,National Marine Mammal Foundation | And 25 more authors.
Diseases of Aquatic Organisms | Year: 2016

An unusual mortality event (UME) involving primarily common bottlenose dolphins Tursiops truncatus of all size classes stranding along coastal Louisiana, Mississippi, and Alabama, USA, started in early 2010 and continued into 2014. During this northern Gulf of Mexico UME, a distinct cluster of perinatal dolphins (total body length <115 cm) stranded in Mississippi and Alabama during 2011. The proportion of annual dolphin strandings that were perinates between 2009 and 2013 were compared to baseline strandings (2000-2005). A case-reference study was conducted to compare demographics, histologic lesions, and Brucella sp. infection prevalence in 69 UME perinatal dolphins to findings from 26 reference perinates stranded in South Carolina and Florida outside of the UME area. Compared to reference perinates, UME perinates were more likely to have died in utero or very soon after birth (presence of atelectasis in 88 vs. 15%, p < 0.0001), have fetal distress (87 vs. 27%, p < 0.0001), and have pneumonia not associated with lungworm infection (65 vs. 19%, p = 0.0001). The percentage of perinates with Brucella sp. infections identified via lung PCR was higher among UME perinates stranding in Mississippi and Alabama compared to reference perinates (61 vs. 24%, p = 0.01), and multiple different Brucella omp genetic sequences were identified in UME perinates. These results support that from 2011 to 2013, during the northern Gulf of Mexico UME, bottlenose dolphins were particularly susceptible to late-term pregnancy failures and development of in utero infections including brucellosis. © The authors 2016.


Venn-Watson S.,National Marine Mammal Foundation | Colegrove K.M.,University of Illinois at Urbana - Champaign | Litz J.,National Oceanic and Atmospheric Administration | Kinsel M.,University of Illinois at Urbana - Champaign | And 18 more authors.
PLoS ONE | Year: 2015

A northern Gulf of Mexico (GoM) cetacean unusual mortality event (UME) involving primarily bottlenose dolphins (Tursiops truncatus) in Louisiana, Mississippi, and Alabama began in February 2010 and continued into 2014. Overlapping in time and space with this UME was the Deepwater Horizon (DWH) oil spill, which was proposed as a contributing cause of adrenal disease, lung disease, and poor health in live dolphins examined during 2011 in Barataria Bay, Louisiana. To assess potential contributing factors and causes of deaths for stranded UME dolphins from June 2010 through December 2012, lung and adrenal gland tissues were histologically evaluated from 46 fresh dead non-perinatal carcasses that stranded in Louisiana (including 22 from Barataria Bay), Mississippi, and Alabama. UME dolphins were tested for evidence of biotoxicosis, morbillivirus infection, and brucellosis. Results were compared to up to 106 fresh dead stranded dolphins from outside the UME area or prior to the DWH spill. UME dolphins were more likely to have primary bacterial pneumonia (22% compared to 2% in non-UME dolphins, P = .003) and thin adrenal cortices (33% compared to 7% in non-UME dolphins, P = .003). In 70% of UME dolphins with primary bacterial pneumonia, the condition either caused or contributed significantly to death. Brucellosis and morbillivirus infections were detected in 7% and 11% of UME dolphins, respectively, and biotoxin levels were low or below the detection limit, indicating that these were not primary causes of the current UME. The rare, life-threatening, and chronic adrenal gland and lung diseases identified in stranded UME dolphins are consistent with exposure to petroleum compounds as seen in other mammals. Exposure of dolphins to elevated petroleum compounds present in coastal GoM waters during and after the DWH oil spill is proposed as a cause of adrenal and lung disease and as a contributor to increased dolphin deaths. © 2015, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.


PubMed | Florida Institute of Technology, Texas Marine Mammal Stranding Network, Carolina National, Marine Mammal Pathology Services and 8 more.
Type: Journal Article | Journal: PloS one | Year: 2015

A northern Gulf of Mexico (GoM) cetacean unusual mortality event (UME) involving primarily bottlenose dolphins (Tursiops truncatus) in Louisiana, Mississippi, and Alabama began in February 2010 and continued into 2014. Overlapping in time and space with this UME was the Deepwater Horizon (DWH) oil spill, which was proposed as a contributing cause of adrenal disease, lung disease, and poor health in live dolphins examined during 2011 in Barataria Bay, Louisiana. To assess potential contributing factors and causes of deaths for stranded UME dolphins from June 2010 through December 2012, lung and adrenal gland tissues were histologically evaluated from 46 fresh dead non-perinatal carcasses that stranded in Louisiana (including 22 from Barataria Bay), Mississippi, and Alabama. UME dolphins were tested for evidence of biotoxicosis, morbillivirus infection, and brucellosis. Results were compared to up to 106 fresh dead stranded dolphins from outside the UME area or prior to the DWH spill. UME dolphins were more likely to have primary bacterial pneumonia (22% compared to 2% in non-UME dolphins, P = .003) and thin adrenal cortices (33% compared to 7% in non-UME dolphins, P = .003). In 70% of UME dolphins with primary bacterial pneumonia, the condition either caused or contributed significantly to death. Brucellosis and morbillivirus infections were detected in 7% and 11% of UME dolphins, respectively, and biotoxin levels were low or below the detection limit, indicating that these were not primary causes of the current UME. The rare, life-threatening, and chronic adrenal gland and lung diseases identified in stranded UME dolphins are consistent with exposure to petroleum compounds as seen in other mammals. Exposure of dolphins to elevated petroleum compounds present in coastal GoM waters during and after the DWH oil spill is proposed as a cause of adrenal and lung disease and as a contributor to increased dolphin deaths.


PubMed | Texas Marine Mammal Stranding Network, Gulf, National Oceanic and Atmospheric Administration, Institute for Marine Mammal Studies and 5 more.
Type: Journal Article | Journal: PloS one | Year: 2015

A multi-year unusual mortality event (UME) involving primarily common bottlenose dolphins (Tursiops truncates) was declared in the northern Gulf of Mexico (GoM) with an initial start date of February 2010 and remains ongoing as of August 2014. To examine potential changing characteristics of the UME over time, we compared the number and demographics of dolphin strandings from January 2010 through June 2013 across the entire GoM as well as against baseline (1990-2009) GoM stranding patterns. Years 2010 and 2011 had the highest annual number of stranded dolphins since Louisianas record began, and 2011 was one of the years with the highest strandings for both Mississippi and Alabama. Statewide, annual numbers of stranded dolphins were not elevated for GoM coasts of Florida or Texas during the UME period. Demographic, spatial, and temporal clusters identified within this UME included increased strandings in northern coastal Louisiana and Mississippi (March-May 2010); Barataria Bay, Louisiana (August 2010-December 2011); Mississippi and Alabama (2011, including a high prevalence and number of stranded perinates); and multiple GoM states during early 2013. While the causes of the GoM UME have not been determined, the location and magnitude of dolphin strandings during and the year following the 2010 Deepwater Horizon oil spill, including the Barataria Bay cluster from August 2010 to December 2011, overlap in time and space with locations that received heavy and prolonged oiling. There are, however, multiple known causes of previous GoM dolphin UMEs, including brevetoxicosis and dolphin morbillivirus. Additionally, increased dolphin strandings occurred in northern Louisiana and Mississippi before the Deepwater Horizon oil spill. Identification of spatial, temporal, and demographic clusters within the UME suggest that this mortality event may involve different contributing factors varying by location, time, and bottlenose dolphin populations that will be better discerned by incorporating diagnostic information, including histopathology.


Jones K.L.,Louisiana State University | Jones K.L.,Murdoch University | Field C.L.,Audubon Aquarium of the Americas | Stedman N.L.,Northwest ZooPath | Maclean R.A.,Audubon Aquarium of the Americas
Journal of Zoo and Wildlife Medicine | Year: 2014

A 13-yr-old male African black-footed penguin (Spheniscus demersus) presented thrice over 7 mo with gastrointestinal obstruction secondary to cloacolithiasis. Clinical signs consistently resolved with cloacolith removal and supportive care. However, 10 mo after initial presentation, it presented with similar signs, plus significant weight loss. No cloacolith was found, and it subsequently died. Significant gross findings included bilateral cecal masses, colonic perforation, and marked secondary coelomitis, multifocal tan to pale hepatic nodules, and pale kidneys with miliary white foci. Histopathologic diagnoses were intestinal lymphosarcoma with hepatic and renal metastases, secondary intestinal rupture, and subacute severe bacterial coelomitis. To the authors' knowledge, this is the first full report of either cloacolithiasis or lymphosarcoma in a penguin. © 2014 by American Association of Zoo Veterinarians.

Loading Audubon Aquarium of the Americas collaborators
Loading Audubon Aquarium of the Americas collaborators