Western Springs, New Zealand
Western Springs, New Zealand

Time filter

Source Type

Jackson B.,Murdoch University | Varsani A.,University of Canterbury | Varsani A.,University of Florida | Varsani A.,University of Cape Town | And 7 more authors.
Archives of Virology | Year: 2015

Beak and feather disease virus (BFDV) is a single-stranded DNA virus that is the etiological agent of beak and feather disease in both wild and captive parrots. Given that BFDV is globally recognized as a conservation threat for wild parrots, between 2011-2013, red-crowned parakeets (Cyanoramphus novaezelandiae, n = 229), which are endemic to New Zealand, were captured in mist nets on Tiritiri Matangi Island and Hauturu-o-Toi/Little Barrier Island (LBI), New Zealand, for disease surveillance. Blood and feathers from all birds were tested by PCR for BFDV, and full genomes were recovered and sequenced. A subset of blood samples (n = 96) were tested for antibodies to BFDV by the haemagglutination inhibition (HI) test. A further 238 feather samples were obtained from red-crowned parakeets from three sites in the Wellington region of the North Island, and these were screened for BFDV. The DNA-based prevalence of BFDV infection determined on Tiritiri Matangi Island was 1.09 % (CI 95 %, 0.1-3.9 %); on Hauturu-o-Toi/LBI, 4.4 % (95 % CI, 0.5 %-15.1 %); on Kapiti Island, 3.4 % (CI 95 %, 1.1-7.8 %); at the ZEALANDIA-Karori sanctuary, 1.6 % (95 % CI, 0-8.4 %); and on Matiu-Somes Island, 0 % (CI 95 %, 0-12.3 %). Seroprevalence for BFDV, indicating prior or current exposure, in the Tiritiri Matangi Island population, it was 2 % (CI 95 %, 0-10.1 %), and in the Hauturu-o-Toi/LBI population was 14 % (CI 95 %, 5.3-27.9 %). BFDV-positive birds showed no signs of clinical disease, with the exception of an individual bird obtained opportunistically from Shakespear Regional Park during the study period, which had classical signs of feather loss. Phylogenetic analysis of the 11 full genome sequences recovered from BFDV-positive red-crowned parakeets revealed evidence of ongoing viral flow between red-crowned parakeets and eastern rosellas (Platycercus eximius) in the Hauraki Gulf/Auckland region, with separate but closely related strains from the Wellington region of the North Island. This is the first study to report HI results for a New Zealand endemic parrot species, and the first epidemiological analysis of serial cross-sectional surveys in a BFDV-infected population of red-crowned parakeets in New Zealand. We postulate that although BFDV remains a threat to small, isolated or naïve populations of parrots globally, the low viral prevalence in this and other studies suggests that native parakeets in New Zealand may act as dead-end or spillover hosts. © 2015, Springer-Verlag Wien.

Jackson B.,Murdoch University | Lorenzo A.,Direction de lEnvironnement de la Province Sud | Theuerkauf J.,Polish Academy of Sciences | Barnaud A.,British Petroleum | And 13 more authors.
Emu | Year: 2014

Beak and feather disease virus (BFDV) is a recognised key threat for the conservation of parrots globally, causing morbidity and mortality of individuals in susceptible species. We present findings from a survey in 2012 to investigate the presence of BFDV in wild New Caledonian parrots, including the endangered Ouvea Parakeet (Eunymphicus uvaeensis). Blood and feather samples from seven Ouvea Parakeets and 13 New Caledonian Rainbow Lorikeets (Trichoglossus haematodus deplanchii), and feathers from 15 New Caledonian Rainbow Lorikeets, five Horned Parakeets (Eunymphicus cornutus) and six New Caledonian Parakeets (Cyanoramphus saisseti) obtained from passive sampling, were tested by polymerase chain reaction (PCR) for BFDV. We identified a BFDV prevalence of 25% (95% CI 11-45%) in wild New Caledonian Rainbow Lorikeets, suggesting this species may act as a reservoir for persistence of BFDV in the wild, placing other parrots in New Caledonia at risk. All other parrot species tested negative for BFDV. New Caledonian Rainbow Lorikeets were introduced to Ouvéa Island in the 1970s, potentially bringing BFDV with them. As Ouvea Parakeets are restricted to this small island, we strongly recommend surveillance screening for BFDV in this species to guide future biosecurity and conservation efforts, and further understand the risk posed by BFDV to threatened parrots. © BirdLife Australia 2014.

Jackson B.,Auckland Zoological Park | Jackson B.,Murdoch University | Heath A.,Massey University | Harvey C.,New Zealand Veterinary Pathology | And 5 more authors.
Journal of Wildlife Diseases | Year: 2015

During a study on health and disease in Red-crowned Parakeets (Cyanoramphus novaezelandiae) on Tiritiri Matangi Island and Little Barrier Island (Hauturu-o-Toi) in New Zealand between 2011 and 2013, an outbreak of feather loss prompted the collection of skin biopsies (n5135) under anesthesia from the head of captured birds. A subset of samples (n57) was frozen to obtain whole specimens for identification of ectoparasites. Mites (range 1–11) were observed in 79/135 (58.5%) skin biopsies, whereas feather loss was only found in 47/142 (33.1%) birds captured during the sampling period. Compact orthokeratotic hyperkeratosis and acanthosis were found in association with mites. Procnemidocoptes janssensi (Acari: Epidermoptidae, Knemidokoptinae) was identified from whole mites obtained from skin biopsies. We describe the presence, pathology, and stages of infestation for knemidokoptinid mange in a wild parrot population in New Zealand. Given the clinical and pathologic changes observed and poor knowledge of the parasite’s New Zealand host and geographic distribution, further work is recommended for this and sympatric parrots, to understand relationships between the host, parasite, environment, and expression of disease. Results from this study reinforce the value of including biopsy samples for the investigation of skin disease in wild birds, particularly to link etiologic agents with pathologic changes. © Wildlife se Association 2015.

Loading Auckland Zoological Park collaborators
Loading Auckland Zoological Park collaborators