Time filter

Source Type

Vaidyanathan V.,University of Auckland | Vaidyanathan V.,Auckland Cancer Society Research Center | Naidu V.,Auckland University of Technology | Kao C.H.-J.,University of Auckland | And 17 more authors.
Molecular BioSystems | Year: 2017

Prostate cancer is one of the most significant health concerns for men worldwide. Numerous researchers carrying out molecular diagnostics have indicated that genetic interactions with biological and behavioral factors play an important role in the overall risk and prognosis of this disease. Single nucleotide polymorphisms (SNPs) are increasingly becoming strong biomarker candidates to identify susceptibility to prostate cancer. We carried out a gene × environment interaction analysis linked to aggressive and non-aggressive prostate cancer (PCa) with a number of SNPs. By using this method, we identified the susceptible alleles in a New Zealand population, and examined the interaction with environmental factors. We have identified a number of SNPs that have risk associations both with and without environmental interaction. The results indicate that certain SNPs are associated with disease vulnerability based on behavioral factors. The list of genes with SNPs identified as being associated with the risk of PCa in a New Zealand population is provided in the graphical abstract. © 2017 The Royal Society of Chemistry.


Karunasinghe N.,Auckland Cancer Society Research Center | Han D.Y.,University of Auckland | Goudie M.,Auckland Hospital | Zhu S.,Auckland Cancer Society Research Center | And 10 more authors.
Journal of Nutrigenetics and Nutrigenomics | Year: 2013

Background: Prostate cancer is a leading public health burden worldwide, and in New Zealand it is the most commonly registered cancer and the third leading cause of cancer deaths among males. Genetic variability and its associations with diet, demographic and lifestyle factors could influence the risk of this disease. Methods: The single nucleotide polymorphisms (SNPs) within a group of antioxidant genes and related markers were tested between patient and control cohorts, adjusted for significant differences between basic lifestyle and demographic characteristics. Results: Increasing age, smoking and low serum selenium levels were significantly associated with an increased risk for prostate disease. Alcohol consumption increased the glutathione peroxidase (GPx) activity. A significant reduction in alcohol consumption was recorded with prostate disease. Three SNPs, namely GPx1 rs1050450, SEL15 rs5845 and CAT rs1001179, were significantly associated with prostate disease risk. A cumulative risk of prostate cancer was noted with 6 risk alleles. A lower GPx activity was recorded with prostate disease compared to the controls. However, the GPx1 rs1050450 allele T in association with prostate cancer recorded a significantly higher GPx activity compared to the controls. Conclusions: These data point to a possibility of identifying individuals at risk of prostate cancer for better management purposes. Copyright © 2013 S. Karger AG, Basel.


Harvey M.,University of Auckland | Sleigh J.,University of Auckland | Voss L.,University of Auckland | Jose J.,Auckland Cancer Society Research Center | And 4 more authors.
Anesthesia and Analgesia | Year: 2015

BACKGROUND: Ketamine is a well-established, rapidly acting dissociative anesthetic. Clinical use is limited by prolonged psychotomimetic phenomena on emergence, often requiring the coadministration of additional hypnotic drugs. We hypothesized that the development of ketamine ester analogs with ultrashort offset times might markedly reduce the dysphoric emergence phenomena and, hence, increase the utility of a ketamine-like hypnotic and analgesic. Here, we describe the results of studies that seek to define the pharmacology of 5 esters of ((1-(2-chlorophenyl)-2-oxocyclohexyl)amino)pentanoate hydrochloride, the first ketamine analogs designed to be susceptible to ultrarapid metabolism. METHODS: Five norketamine ester analogs (R1-R5) were compared by ability to produce loss of righting and nociceptive blunting in rats. Toxicity testing was performed for 2 analogs (R1, R5) with 50% lethal dose (LD50) estimation in rats. In vitro metabolic stability was tested in rabbit plasma and whole blood by high-performance liquid chromatography. Behavioral and hemodynamic effects were observed in rabbits. We estimated the pharmacokinetics of these analogs in rabbits. RESULTS: All 5 norketamine esters produced rapid loss of righting reflex and diminished pedal withdrawal with ultrarapid offset in the models studied (return of righting reflex 87 seconds [interquartile range (IQR) 78-131] R1 vs 996 seconds [IQR 840-1304] ketamine in rats; P < 0.01). The LD50 was comparable to that of ketamine (LD50 R1 50.2 mg/kg [95% confidence interval, 30-63]). For all analogs, hydrolysis to sole carboxylic acid derivatives was most rapid in vivo (clearance 1.61 L/kg/min R1 [IQR 0.40-2.42]), followed by whole blood and then plasma. Analog R5 demonstrated relatively greater nociceptive blunting than hypnotic effect (P < 0.001; pedal withdrawal score comparison with R1). CONCLUSIONS: The 5 norketamine ester analogs retain the hypnotic characteristics of the parent compound, yet display rapid offset due to ultrarapid metabolism.


Marshall A.J.,Auckland Cancer Society Research Center | Lin J.-M.,University of Auckland | Grey A.,University of Auckland | Reid I.R.,University of Auckland | And 2 more authors.
Bioorganic and Medicinal Chemistry | Year: 2013

Saturated fatty acids (e.g., palmitic acid) are known to moderately inhibit the development of osteoclasts in vitro. In pursuit of more effective inhibitors of osteoclastogenesis we explored two new classes of palmitic acid analogues containing either an ether or triazolyl group at various positions along the chain. The compounds were evaluated for their ability to inhibit the formation of osteoclasts in primary mouse bone marrow cultures. The oxyacids were generally prepared by condensation of the appropriate alkyl halides and diols, followed by Jones oxidation. The triazolyl acids were prepared by copper-catalysed click chemistry between alkyl azides and acetylenic acids, or with the appropriately-protected azides and alkynes, followed by deprotection and oxidation. The oxyacids were little more effective than palmitic acid, but the triazolyl analogues were much more effective osteoclastogenesis inhibitors, especially when the triazole was distant from the acid unit. © 2013 Elsevier Ltd. All rights reserved.


PubMed | Auckland Cancer Society Research Center
Type: Journal Article | Journal: Bioorganic & medicinal chemistry | Year: 2013

Saturated fatty acids (e.g., palmitic acid) are known to moderately inhibit the development of osteoclasts in vitro. In pursuit of more effective inhibitors of osteoclastogenesis we explored two new classes of palmitic acid analogues containing either an ether or triazolyl group at various positions along the chain. The compounds were evaluated for their ability to inhibit the formation of osteoclasts in primary mouse bone marrow cultures. The oxyacids were generally prepared by condensation of the appropriate alkyl halides and diols, followed by Jones oxidation. The triazolyl acids were prepared by copper-catalysed click chemistry between alkyl azides and acetylenic acids, or with the appropriately-protected azides and alkynes, followed by deprotection and oxidation. The oxyacids were little more effective than palmitic acid, but the triazolyl analogues were much more effective osteoclastogenesis inhibitors, especially when the triazole was distant from the acid unit.

Loading Auckland Cancer Society Research Center collaborators
Loading Auckland Cancer Society Research Center collaborators