Auburn, AL, United States
Auburn, AL, United States

Auburn University is a public university located in Auburn, Alabama, United States. With more than 20,000 undergraduate students, and a total of over 25,000 students and 1,200 faculty members, it is one of the largest universities in the state. Auburn was chartered on February 7, 1856, as the East Alabama Male College, a private liberal arts school affiliated with the Methodist Episcopal Church, South. In 1872, the college became the state's first public land-grant university under the Morrill Act and was renamed the Agricultural and Mechanical College of Alabama. In 1892, the college became the first four-year coeducational school in the state. The curriculum at the university originally focused on arts and agriculture. This trend changed under the guidance of Dr. William Leroy Broun, who taught classics and science and believed both disciplines were important in the overall growth of the university and the individual. The college was renamed the Alabama Polytechnic Institute in 1899, largely because of Dr. Broun’s influence. The college continued expanding, and in 1960 its name was officially changed to Auburn University to acknowledge the varied academic programs and larger curriculum of a major university. It had been popularly known as "Auburn" for many years. In 1964, under Federal Court mandate AU admitted its first African American student. Auburn is among the few American universities designated as a land-grant, sea-grant, and space-grant research center. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Auburn University | Date: 2017-08-30

The present disclosure provides fibrous composition comprising a soluble or a dispersible N-halamine, for example 1-chloro-2,2,5,5-tetramethyl-4-imidazolidinone (i.e., compound I). Additionally, the disclosure provides methods for producing the fibrous compositions comprising a soluble or a dispersible N-halamine as well as methods for protecting a person from an infection using the fibrous compositions comprising a soluble or a dispersible N-halamine. The compositions and methods according to the present disclosure provide several advantages, such as stability, less time to provide sufficient antimicrobial inactivation, and are inexpensive and require lower amount of active concentrations to be effective.


The present invention relates to the production of cell cultures and tissues from undifferentiated pluripotent stem cells using three-dimensional biomimetic materials. The resultant cell cultures or tissues can be used in any of a number of protocols including testing chemicals, compounds, and drugs. Further, the methods and compositions of the present invention further provide viable cell sources and novel cell delivery platforms that allow for replacement of diseased tissue and engraftment of new cardiomyocytes from a readily available in vitro source. The present invention includes novel methods required for the successful production of cell cultures and tissues, systems and components used for the same, and methods of using the resultant cell and tissue compositions.


Disclosed are compositions and methods that include or utilize plant growth promoting rhizobacteria (PGPR) for improving growth and health in plants and animals. The compositions and methods include or utilize a plant growth promoting rhizobacteria (PGPR) that expresses a protein associated with pectin metabolism, and a saccharide comprising pectin or a pectin-related saccharide.


Patent
Auburn University | Date: 2017-02-09

Stable nanoparticle compositions comprising buprenorphine and at least one biodegradable polymer. The disclosure also provides methods of controlling pain in an animal and methods of treating addiction in a human utilizing the stable nanoparticle compositions, as well as pharmaceutical formulations comprising the stable nanoparticle compositions. The stable nanoparticle compositions are capable of releasing buprenorphine over several days, weeks, or months following administration. The stable nanoparticle compositions of buprenorphine utilize biodegradable polymers capable of degrading into non-toxic components in the body of an animal and may be excreted in the urine of the animal following their metabolism in the body. The stable nanoparticle compositions can advantageously provide sustained release of buprenorphine in the body after a single administration without the need for surgical removal of implanted matrices subsequent to depletion of the drug.


Disclosed are compositions and methods that include or utilize plant growth promoting xhizobacteria (PGPR) for improving growth and health in plants and animals. The compositions and methods include or utilize a plant growth promoting rfiizobacteria (PGPR) that expresses a protein associated with pectin metabolism, and a saccharide comprising pectin or a pectin -related saccharide.


Disclosed are compositions, kits, and methods for inducing an immune response against an infection or a disease. The compositions typically include biodegradable particles having an average effective diameter of 0.5 - 20 , and optionally the compositions include one or more of an adjuvant, an apopiosis inhibitor, and an antigen. The compositions, kits, and methods may be utilized to induce a cell-mediated response, such as a T- helper cell response., arid/or a humoral response against a pathogen or a disease. In some embodiments, the compositions, kits, and methods may be utilized to induce preferentially a Till response versus other types of immune responses such as a Th2 response.


Patent
Auburn University | Date: 2017-06-14

Enantiomers of 1,6-isoneplanocin, including derivatives of the enantiomers of 1,6-isoneplanocin, are disclosed along with novel synthetic methods. In particular, a substituted cyclopentane epoxide is synthesized into the enantiomers of 1,6-isoneplanocin. Enantiomers of carbocyclic nucleoside analogs of 3-deazaneplanocin to provide D- and L-like 1,6-iso-3-deazaneplanocin are also disclosed. The small molecule chemotherapeutic compounds beneficially provide DNA and RNA antiviral activity, demonstrating activity towards, for example, human cytomegalovirus, measles, Ebola, norovirus, dengue, vaccinia and HBV. Compounds exhibiting reduced S-adenosylhomocysteine hydrolase inhibitory effects are disclosed and provide improved toxicity profiles in comparison to neplanocin. The invention provides improved prophylactic and/or therapeutic antiviral efficacy.


Patent
Auburn University | Date: 2016-06-23

In at least one illustrative embodiment, an electromagnetic filter may include a transfer pipe and multiple electromagnetic filter elements positioned in an interior volume of the pipe. Each electromagnetic filter element includes a support comb, a solenoid coupled to the support comb, and multiple magnetic members arranged in a planar array positioned within an opening of the support comb. Each magnetic member may rotate about an end that is coupled to the support comb. The magnetic members may be magnetostrictive sensors and may include a biorecognition element to bind with a target microorganism. A method for fluid filtration includes coupling the electromagnetic filter between a fluid source and a fluid destination, energizing the solenoids of each electromagnetic filter elements, and flowing a fluid media through the transfer pipe of the electromagnetic filter. The fluid media may be liquid food such as fruit juice. Other embodiments are described and claimed.


Disclosed are compositions, kits, and methods for inducing an immune response against an infection or a disease. The compositions typically include biodegradable particles having an average effective diameter that such that the biodegradable particles are phagocytosed by antigen presenting cells when the biodegradable particles are administered to a subject in need thereof. Optionally, the compositions include one or more of an adjuvant, an apoptosis inhibitor, and an antigen. The compositions, kits, and methods may be utilized to induce a cell-mediated response, such as a T-helper cell response, and/or a humoral response against a pathogen or a disease. In some embodiments, the compositions, kits, and methods may be utilized to induce preferentially a Th1 response versus other types of immune responses such as a Th2 response.


Described herein is a process for producing saccharides and ethanol from biomass feedstock that includes (a) producing an enzyme composition by culturing a fungal strain(s) in the presence of a lignocellulosic medium, (b) using the enzyme composition to saccharify the biomass feedstock, and (c) fermenting the saccharified biomass feedstock to produce ethanol. The process is scalable and, in certain aspects, is capable of being deployed on farms, thereby allowing local production of saccharides and ethanol and resulting in a reduction of energy and other costs for farm operators. Optional steps to improve the biomass-to-fuel conversion efficiency are also contemplated, as are uses for byproducts of the process described herein.

Loading Auburn University collaborators
Loading Auburn University collaborators