Wiener Neustadt, Austria
Wiener Neustadt, Austria

Time filter

Source Type

Schlauf M.,Attophotonics Biosciences GmbH | Assadollahi S.,Attophotonics Biosciences GmbH | Palkovits R.,Attophotonics Biosciences GmbH | Palkovits R.,University of Applied Sciences Wiener Neustadt | And 2 more authors.
Journal of Nanomaterials | Year: 2015

Resonance enhanced absorption (REA) nanocolor microfluidic devices are new promising bioassay platforms, which employ nanoparticle- (NP-) protein conjugates for the immunodetection of medically relevant markers in biologic samples such as blood, urine, and saliva. The core component of a REA test device is a PET chip coated with aluminum and SiOthin layers, onto which biorecognitive molecules are immobilized. Upon addition of a sample containing the analyte of interest, a NP-protein-analyte complex is formed in the test device that is captured on the REA chip, for example, via streptavidin-biotin interaction. Thereby, a colored symbol is generated, which allows optical readout. Silver enhancement of the bound nanoparticles may be used to increase the sensitivity of the assay. Herein, we demonstrate that adsorptive immobilization via a cationic polymeric interlayer is a competitive and fast technique for the binding of the capture protein streptavidin onto planar SiOsurfaces such as REA biochips. Moreover, we report the development of a silver enhancement technology that operates even in the presence of high chloride concentrations as may be encountered in biologic samples. The silver enhancement reagents may be integrated into the microfluidic assay platform to be released upon sample addition. Hereby, a highly sensitive one-step assay can be realized. © 2015 Marlies Schlauf et al.


PubMed | Attophotonics Biosciences GmbH
Type: Journal Article | Journal: Journal of biomedical nanotechnology | Year: 2010

The effectiveness of a novel multicolor biochip boosted by reducing cluster repulsion and in-situ silver enhancement has been demonstrated by using anti-serum albumine antibodies conjugated to gold nanoparticles on a vacuum metalized plastic film coated with nano-resonance driving ceramic multilayers. A dense and smooth vacuum deposited SiO approximately 1.6 top layer (50 to 300 nm thick) on a flexible thermoplastic polymer poly-ethylene-terephthalate-chip functionalized via poly-ethylenimine monolayer coating and chemical cross-linking was employed to immobilize capture antibodies. Following capturing of the human serum albumin antigen from analyte solution, the multicolor chip reacts with anti HSA-gold nanoparticles binding them in a nanometric distance to the resonant mirror of the device-visible to the eye as faint coloring of the chip surface. Following silver enhancement, a strong metallic angle-dependent color via Resonance Enhanced Absorption is observed. In this study, silver staining has been used for the first time to boost and shift the color of nano-resonance enhanced optical bioassays. The use of silver staining increases and significantly modifies the intensity of the resonance color and was done in less than 5 minutes directly on the chip. This novel methodology will find broad application in Point-of-Care diagnostic devices via a color signal output designed as a written text with high contrast to replace standard lateral flow devices just showing lines or dots.

Loading Attophotonics Biosciences GmbH collaborators
Loading Attophotonics Biosciences GmbH collaborators