Entity

Time filter

Source Type

Morrisville, NC, United States

Slade G.D.,University of North Carolina at Chapel Hill | Conrad M.S.,University of North Carolina at Chapel Hill | Diatchenko L.,University of North Carolina at Chapel Hill | Rashid N.U.,University of North Carolina at Chapel Hill | And 7 more authors.
Pain | Year: 2011

For reasons unknown, temporomandibular disorder (TMD) can manifest as localized pain or in conjunction with widespread pain. We evaluated relationships between cytokines and TMD without or with widespread palpation tenderness (TMD-WPT or TMD+WPT, respectively) at protein, transcription factory activity, and gene levels. Additionally, we evaluated the relationship between cytokines and intermediate phenotypes characteristic of TMD and WPT. In a case-control study of 344 females, blood samples were analyzed for levels of 22 cytokines and activity of 48 transcription factors. Intermediate phenotypes were measured by quantitative sensory testing and questionnaires asking about pain, health, and psychological status. Single nucleotide polymorphisms (SNPs) coding cytokines and transcription factors were genotyped. TMD-WPT cases had elevated protein levels of proinflammatory cytokine monocyte chemotactic protein (MCP-1) and antiinflammatory cytokine interleukin (IL)-1ra, whereas TMD+WPT cases had elevated levels of proinflammatory cytokine IL-8. MCP-1, IL-1ra, and IL-8 were differentially associated with experimental pain, self-rated pain, self-rated health, and psychological phenotypes. TMD-WPT and TMD+WPT cases had inhibited transcription activity of the antiinflammatory cytokine transforming growth factor β1 (TGFβ1). Interactions were observed between TGFβ1 and IL-8 SNPs: an additional copy of the TGFβ1 rs2241719 minor T allele was associated with twice the odds of TMD+WPT among individuals homozygous for the IL-8 rs4073 major A allele, and half the odds of TMD+WPT among individuals heterozygous for rs4073. These results demonstrate how pro- and antiinflammatory cytokines contribute to the pathophysiology of TMD and WPT in genetically susceptible people. Furthermore, they identify MCP-1, IL-1ra, IL-8, and TGFβ1 as potential diagnostic markers and therapeutic targets for pain in patients with TMD. © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.


Patent
Attagene Inc. | Date: 2012-09-08

A method of determining water quality of a water sample, comprising exposing the water sample to a test cell system; generating at least one profile of ensuing changes in activities of transcription factors in said test cell system in response to said exposing; and determining from the generated at least one profile the water quality of the water sample. Computer systems and kits for carrying out the water quality determination of water specimens are also described, in which water quality can be readily and accurately determined by transcription factor activity analysis.


Patent
Attagene Inc. | Date: 2012-09-08

A method of determining biosimilarity of a sample composition to a reference composition, including: exposing a test cell system to a sample composition so that the test cell system responds to the sample composition by change in transcription factor activity in the test cell system; generating from the test cell system response an output correlative to the change of transcription factor activity in the test cell system; and determining from comparison of said output with a transcription factor activity reference standard for the reference composition, the biosimilarity of the sample composition to the reference composition. Computer systems and kits for carrying out the determination of biosimilarity of compositions are also described, in which biosimilarity of compositions ranging from simple molecules to complex mixtures can be readily and accurately determined by transcription factor activity analysis.


Burdick A.D.,Pfizer | Sciabola S.,Pfizer | Mantena S.R.,Pfizer | Hollingshead B.D.,Pfizer | And 9 more authors.
Nucleic Acids Research | Year: 2014

Fully phosphorothioate antisense oligonucleotides (ASOs) with locked nucleic acids (LNAs) improve target affinity, RNase H activation and stability. LNA modified ASOs can cause hepatotoxicity, and this risk is currently not fully understood. In vitro cytotoxicity screens have not been reliable predictors of hepatic toxicity in non-clinical testing; however, mice are considered to be a sensitive test species. To better understand the relationship between nucleotide sequence and hepatotoxicity, a structure-toxicity analysis was performed using results from 2 week repeated-dose-tolerability studies in mice administered LNA-modified ASOs. ASOs targeting human Apolipoprotien C3 (Apoc3), CREB (cAMP Response Element Binding Protein) Regulated Transcription Coactivator 2 (Crtc2) or Glucocorticoid Receptor (GR, NR3C1) were classified based upon the presence or absence of hepatotoxicity in mice. From these data, a random-decision forest-classification model generated from nucleotide sequence descriptors identified two trinucleotide motifs (TCC and TGC) that were present only in hepatotoxic sequences. We found that motif containing sequences were more likely to bind to hepatocellular proteins in vitro and increased P53 and NRF2 stress pathway activity in vivo. These results suggest in silico approaches can be utilized to establish structure-toxicity relationships of LNA-modified ASOs and decrease the likelihood of hepatotoxicity in preclinical testing. © 2014 © The Author(s) 2014. Published by Oxford University Press.

Discover hidden collaborations