Time filter

Source Type

Gams A.,Jozef Stefan Institute | Ude A.,Jozef Stefan Institute | Morimoto J.,ATR Computational Neuroscience Labs
IEEE International Conference on Intelligent Robots and Systems | Year: 2015

Human-demonstrated motion transferred to a robotic platform often needs to be adapted to the current state of the environment or to modified task requirements. Adaptation, i. e. learning of a modified behavior, needs to be fast to enable quick utilization of the robot either in industry or in future household-assistant tasks. In this paper we show how to accelerate trajectory adaptation based on learning of coupling terms in the framework of dynamic movement primitives (DMPs). Our method applies ideas from feedback error learning to iterative learning control (ILC). By taking into account the actual physical constraints of the synchronous motion - through synchronization of both positions (or forces) and velocities - it is not only a more faithful representation of actual real-world processes, but it also accelerates the speed of convergence. To show the applicability of the approach in the framework of DMPs, we tested it on a formulation which encodes an initial discrete motion, followed by a periodic behavior, all in a single system. Modifications of the original discrete-periodic formulation now also allow for the use of DMP temporal scaling property. In the paper we also show how the DMP coupling can be implemented in joint space, whereas the measured forces and previous approaches always remained in the task space. We applied our approach to an example dual-arm synchronization task on Sarcos humanoid robot CB-i. © 2015 IEEE. Source

Morimoto J.,ATR Computational Neuroscience Labs | Kawato M.,ATR Brain Information Communication Research Laboratory Group
Journal of the Royal Society Interface | Year: 2015

In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the 'understanding the brain by creating the brain' approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain-machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. © 2015 The Author(s) Published by the Royal Society. All rights reserved. Source

Tangkaratt V.,Tokyo Institute of Technology | Mori S.,Tokyo Institute of Technology | Zhao T.,Tokyo Institute of Technology | Morimoto J.,ATR Computational Neuroscience Labs | Sugiyama M.,Tokyo Institute of Technology
Neural Networks | Year: 2014

The goal of reinforcement learning (RL) is to let an agent learn an optimal control policy in an unknown environment so that future expected rewards are maximized. The model-free RL approach directly learns the policy based on data samples. Although using many samples tends to improve the accuracy of policy learning, collecting a large number of samples is often expensive in practice. On the other hand, the model-based RL approach first estimates the transition model of the environment and then learns the policy based on the estimated transition model. Thus, if the transition model is accurately learned from a small amount of data, the model-based approach is a promising alternative to the model-free approach. In this paper, we propose a novel model-based RL method by combining a recently proposed model-free policy search method called policy gradients with parameter-based exploration and the state-of-the-art transition model estimator called least-squares conditional density estimation. Through experiments, we demonstrate the practical usefulness of the proposed method. © 2014 Elsevier Ltd. Source

Noda T.,ATR Computational Neuroscience Labs | Sugimoto N.,Center for Information and Neural Networks | Furukawa J.,Osaka University | Sato M.-A.,Ritsumeikan University | And 2 more authors.
IEEE-RAS International Conference on Humanoid Robots | Year: 2012

In this paper, we introduce our attempt to develop an assistive robot system which can contribute to Brain-Machine Interface (BMI) rehabilitation. For the BMI rehabilitation, we construct a Electroencephalogram(EEG)-Exoskeleton robot system, where the exoskeleton robot is connected to the EEG system so that the users can control the exoskeleton robot by using their brain activities. We use a classification method which considers covariance matrices of measured EEG signals as inputs to decode brain activities. The decoded brain activities are used to control exoskeleton movements. In this study, we consider assisting the stand-up movement which is one of the most frequently appeared movements in daily life and also a standard movement as a rehabilitation training. To assist the stand-up movement, we develop a force control model which takes dynamics of tendon string into account for the pneumatic-electric hybrid actuation system used in our exoskeleton robot. The results show that the exoskeleton robot successfully assisted user stand-up movements, where the assist system was activated by the decoded brain activities. © 2012 IEEE. Source

Katori Y.,University of Tokyo | Lang E.J.,New York University | Onizuka M.,Nara Institute of Science and Technology | Kawato M.,University of Tokyo | And 2 more authors.
International Journal of Bifurcation and Chaos | Year: 2010

Inferior olive (IO) neurons project to the cerebellum and contribute to motor control. They can show intriguing spatio-temporal dynamics with rhythmic and synchronized spiking. IO neurons are connected to their neighbors via gap junctions to form an electrically coupled network, and so it is considered that this coupling contributes to the characteristic dynamics of this nucleus. Here, we demonstrate that a gap junction-coupled network composed of simple conductance-based model neurons (a simplified version of a HodgkinHuxley type neuron) reproduce important aspects of IO activity. The simplified phenomenological model neuron facilitated the analysis of the single cell and network properties of the IO while still quantitatively reproducing the spiking patterns of complex spike activity observed by simultaneous recording in anesthetized rats. The results imply that both intrinsic bistability of each neuron and gap junction coupling among neurons play key roles in the generation of the spatio-temporal dynamics of IO neurons. © World Scientific Publishing Company. Source

Discover hidden collaborations