Time filter

Source Type

Mudd R.G.,University of Hawaii at Manoa | Liu W.,University of Hawaii at Manoa | Kobayashi N.,Hydrospheric Atmospheric Research Center | Kumagai T.,Hydrospheric Atmospheric Research Center | And 5 more authors.
Water Resources Research | Year: 2016

To investigate the effects of expanding rubber (Hevea brasiliensis) cultivation on water cycling in Mainland Southeast Asia (MSEA), evapotranspiration (ET) was measured within rubber plantations at Bueng Kan, Thailand, and Kampong Cham, Cambodia. After energy closure adjustment, mean annual rubber ET was 1211 and 1459 mm yr-1 at the Thailand and Cambodia sites, respectively, higher than that of other tree-dominated land covers in the region, including tropical seasonal forest (812-1140 mm yr-1), and savanna (538-1060 mm yr-1). The mean proportion of net radiation used for ET by rubber (0.725) is similar to that of tropical rainforest (0.729) and much higher than that of tropical seasonal forest (0.595) and savanna (0.548). Plant area index (varies with leaf area changes), explains 88.2% and 73.1% of the variance in the ratio of latent energy flux (energy equivalent of ET) to potential latent energy flux (LE/LEpot) for midday rain-free periods at the Thailand and Cambodia sites, respectively. High annual rubber ET results from high late dry season water use, associated with rapid refoliation by this brevideciduous species, facilitated by tapping of deep soil water, and by very high wet season ET, a characteristic of deciduous trees. Spatially, mean annual rubber ET increases strongly with increasing net radiation (Rn) across the three available rubber plantation observation sites, unlike nonrubber tropical ecosystems, which reduce canopy conductance at high Rn sites. High water use by rubber raises concerns about potential effects of continued expansion of tree plantations on water and food security in MSEA. © 2016. American Geophysical Union. Source

Wang M.,Atmospheric science and Global Change DivisionPacific Northwest National LaboratoryRichland | Larson V.E.,University of Wisconsin - Milwaukee | Ghan S.,Atmospheric science and Global Change DivisionPacific Northwest National LaboratoryRichland | Ovchinnikov M.,Atmospheric science and Global Change DivisionPacific Northwest National LaboratoryRichland | And 4 more authors.
Journal of Advances in Modeling Earth Systems | Year: 2015

In this study, a higher-order turbulence closure scheme, called Cloud Layers Unified By Binormals (CLUBB), is implemented into a Multiscale Modeling Framework (MMF) model to improve low-cloud simulations. The performance of CLUBB in MMF simulations with two different microphysics configurations (one-moment cloud microphysics without aerosol treatment and two-moment cloud microphysics coupled with aerosol treatment) is evaluated against observations and further compared with results from the Community Atmosphere Model, Version 5 (CAM5) with conventional cloud parameterizations. CLUBB is found to improve low-cloud simulations in the MMF, and the improvement is particularly evident in the stratocumulus-to-cumulus transition regions. Compared to the single-moment cloud microphysics, CLUBB with two-moment microphysics produces clouds that are closer to the coast and agrees better with observations. In the stratocumulus-to-cumulus transition regions, CLUBB with two-moment cloud microphysics produces short-wave cloud forcing in better agreement with observations, while CLUBB with single-moment cloud microphysics overestimates short-wave cloud forcing. CLUBB is further found to produce quantitatively similar improvements in the MMF and CAM5, with slightly better performance in the MMF simulations (e.g., MMF with CLUBB generally produces low clouds that are closer to the coast than CAM5 with CLUBB). Improved low-cloud simulations in MMF make it an even more attractive tool for studying aerosol-cloud-precipitation interactions. © 2015. The Authors. Source

Leng G.,Chinese Academy of Sciences | Huang M.,Atmospheric science and Global Change DivisionPacific Northwest National LaboratoryRichland | Tang Q.,Chinese Academy of Sciences | Leung L.R.,Atmospheric science and Global Change DivisionPacific Northwest National LaboratoryRichland
Journal of Advances in Modeling Earth Systems | Year: 2015

This study investigates the effects of irrigation on global water resources by performing and analyzing Community Land Model 4.0 (CLM4) simulations driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs). For each climate scenario, three sets of numerical experiments were performed: (1) a CTRL experiment in which all crops are assumed to be rainfed; (2) an IRRIG experiment in which the irrigation module is activated using surface water (SW) to feed irrigation; and (3) a PUMP experiment in which a groundwater pumping scheme coupled with the irrigation module is activated for conjunctive use of surface water and groundwater (GW) for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based water use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major effects: SW (GW) depletion in regions with irrigation primarily fed by SW (GW), respectively. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting increased vulnerability to drought. By the end of the 21st century, combined effect of increased irrigation water demand and amplified temporal-spatial variability of water supply may lead to severe local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our study highlights the need to account for irrigation effects and sources in assessing regional climate change impacts. © 2015. The Authors. Source

Gustafson W.I.,Atmospheric science and Global Change DivisionPacific Northwest National LaboratoryRichland | Ma P.-L.,Atmospheric science and Global Change DivisionPacific Northwest National LaboratoryRichland | Singh B.,Atmospheric science and Global Change DivisionPacific Northwest National LaboratoryRichland
Journal of Advances in Modeling Earth Systems | Year: 2014

The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and within the controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for a northern high-latitude region. This paper characterizes the precipitation characteristics for continental, midlatitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in a global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 s for 32 km grid spacing, to the value of 3600 s used for 2° grid spacing in CAM5. For comparison, a 1200 s and an infinite convective timescale are also used. The results show that the 600 s timescale gives the most accurate precipitation amount over the central United States. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too few heavy rain events. With longer timescales, one can improve the frequency distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must decide between accurate diurnal timing and rain amount when choosing an appropriate convective timescale. © 2014. The Authors. Source

Discover hidden collaborations