Danbury, CT, United States
Danbury, CT, United States
SEARCH FILTERS
Time filter
Source Type

Liquid compositions useful for the cleaning of residue and contaminants from a III-V microelectronic device material, such as InGaAs, without substantially removing the III-V material. The liquid compositions are improvements of the SC1 and SC2 formulations.


A method and composition for removing bulk and/or ion-implanted resist material from microelectronic devices have been developed. The compositions effectively remove the ion-implanted resist material while not damaging the silicon-containing or germanium-containing materials.


Patent
Atmi | Date: 2013-09-27

In one aspect, the present disclosure relates to the substantially sterile transport of a substantially sterile substance using a liner-based assembly having an overpack and a flexible or semi-rigid liner disposed within the overpack configured for pressure dispense, and a connector securable to at least one of the overpack or liner. The connector may include a first port operably connected with a quick connector configured for substantially aseptic filling of the liner. The first port may be configured for substantially aseptic sealing after filling of the liner. The connector may be configured for substantially aseptic dispense of the substance of the liner via the first port after unsealing of the first port or via a second port. In some particular embodiments, the second port may be operably connected with a quick connector, and dispense of the substance of the liner occurs via the quick connector of the second port. The assembly may include one or more of a mixer, a sparger, a sensor, or combinations thereof, and may be arranged to form a bioreactor. Related methods are also described.


Patent
Entegris and Atmi | Date: 2014-12-16

Compositions and methods for selectively removing unreacted metal material (e.g., unreacted nickel) relative to metal germanide (e.g., NiGe), metal-III-V materials, and germanium from microelectronic devices having same thereon. The compositions are substantially compatible with other materials present on the microelectronic device such as low-k dielectrics and silicon nitride.


A high dielectric constant (k40), low leakage current (10^(6 )A/cm^(2 )at 0.6 nm or lower equivalent oxide thickness) non-crystalline metal oxide is described, including an oxide of two or more compatible metals selected from the group consisting of bismuth, tantalum, niobium, barium, strontium, calcium, magnesium, titanium, zirconium, hafnium, tin, and lanthanide series metals. Metal oxides of such type may be formed with relative proportions of constituent metals being varied along a thickness of such oxides, to enhance their stability. The metal oxide may be readily made by a disclosed atomic layer deposition process, to provide a metal oxide dielectric material that is usefully employed in DRAM and other microelectronic devices.


Patent
Advanced Materials Technology, Inc. and Atmi | Date: 2015-01-29

A cleaning composition and process for cleaning post-chemical mechanical polishing (CMP) residue and contaminants from a microelectronic device having said residue and contaminants thereon. The cleaning compositions are substantially devoid of alkali hydroxides, alkaline earth metal hydroxides, and tetramethylammonium hydroxide. The composition achieves highly efficacious cleaning of the post-CMP residue and contaminant material from the surface of the microelectronic device without compromising the low-k dielectric material or the copper interconnect material.


A mixing apparatus including a kinetic energy source, a mixing tank, a pivot guide, and transfer shaft is used to drive a mixing paddle through a circular path within a tank without substantial shaft rotation. Sleeved and sleeveless mixing paddles are provided in combination with sealable mixing tanks. A volumetric compensation system responsive to tank wall deflection is used to maintain the internal volume of a mixing tank within predetermined limits. One mixing apparatus includes multiple mixing shafts and paddles coupled to at least one kinetic energy source. Methods for fabricating sleeved paddle-containing mixing apparatuses are further provided.


Patent
Advanced Materials Technology, Inc. and Atmi | Date: 2014-03-04

Semi-aqueous compositions useful for the selective removal of titanium nitride and/or photoresist etch residue materials relative to metal conducting, e.g., tungsten and copper, and insulating materials from a microelectronic device having same thereon. The semi-aqueous compositions contain at least one oxidant, at least one etchant, and at least one organic solvent, may contain various corrosion inhibitors to ensure selectivity.


Patent
Atmi and Advanced Materials Technology, Inc. | Date: 2013-05-17

A cleaning composition and process for cleaning post-chemical mechanical polishing (CMP) residue and contaminants from a microelectronic device having said residue and contaminants thereon. The cleaning compositions include at least one quaternary base, at least one amine, at least one corrosion inhibitor, and at least one solvent. The composition achieves highly efficacious cleaning of the post-CMP residue and contaminant material from the surface of the microelectronic device while being compatible with barrier layers.


Patent
Advanced Materials Technology, Inc. and Atmi | Date: 2014-08-28

Compositions useful for the selective removal of titanium nitride and/or photoresist etch residue materials relative to insulating materials from a microelectronic device having same thereon. The removal compositions contain at least one oxidant, one etchant, and one activator to enhance the etch rate of titanium nitride.

Loading ATMI collaborators
Loading ATMI collaborators