Entity

Time filter

Source Type

Erzurum, Turkey

Atatürk University is a land-grant university established in 1957 in Erzurum, Turkey. The university consists of 17 faculties, 5 colleges, 15 vocational colleges, 6 institutes and 16 research centers with 33,544 students. Atatürk University's main campus is in Erzurum city, Eastern Anatolia's largest city. It is now one of the city's most significant resources. Since its establishment in 1957, it has served as a hub of educational and cultural excellence for the eastern region. The university is twinned with and has agreement of cooperation with the University of Nebraska and the Balkan Universities Network. Wikipedia.


Ozyurt O.,Ataturk University
Renewable and Sustainable Energy Reviews | Year: 2010

Energy is an essential factor to achieve sustainable development. So, countries striving to this end are seeking to reassess their energy systems with a view towards planning energy programs and strategies in line with sustainable development goals and objectives. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. Renewable energy technologies of wind, biofuels, solar thermal and photovoltaics are finally showing maturity and the ultimate promise of cost competitiveness. With respect to global environmental issues, Turkey's carbon dioxide emissions have grown along with its energy consumption. States have played a leading role in protecting the environment by reducing emissions of greenhouse gases. In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. © 2010 Elsevier Ltd. All rights reserved. Source


Honey can be adulterated in various ways. One of the adulteration methods is the addition of different sugar syrups during or after honey production. Starch-based sugar syrups, high fructose corn syrup (HFCS), glucose syrup (GS) and saccharose syrups (SS), which are produced from beet or canes, can be used for adulterating honey. In this study, adulterated honey samples were prepared with the addition of HFCS, GS and SS (beet sugar) at a ratio of 0%, 10%, 20%, 40% and 50% by weight. 13C/12C analysis was conducted on these adulterated honey samples using an isotope ratio mass spectrometer in combination with an elemental analyser (EA-IRMS). As a result, adulteration using C4 sugar syrups (HFCS and GS) could be detected to a certain extent while adulteration of honey using C3 sugar syrups (beet sugar) could not be detected. Adulteration by using SS (beet sugar) still has a serious detection problem, especially in countries in which beet is used in manufacturing sugar. For this reason, practice and analysis methods are needed to meet this deficit and to detect the adulterations precisely in the studies that will be conducted. © 2012 Elsevier Ltd. All rights reserved. Source


Ground-source heat-pump systems provide a new and clean way of heating buildings in the world. They make use of renewable energy stored in the ground, providing one of the most energy-efficient ways of heating buildings. Consumption costs are lowered through the use of free energy from the environment, and the dependence on fossil fuels simultaneously reduces. The aim of this study is to evaluate the performance of vertical ground-source heat-pump system for climatic condition of Erzurum having cold climate in Turkey. For this purpose, an experimental set-up was constructed. The experimental apparatus consisted of a series GHE (ground heat exchanger), a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement equipments. In this study, the performance of the system was experimentally investigated. The experimental results were obtained from October to May for the months of heating season of 2008-2009. The experimental results indicate that the average heat-pump COP and overall system's COPS values are approximately 3.0 and 2.6 in the coldest months of heating season. This study also shows that this system could be used for residential heating in the province of Erzurum being a cold climate region of Turkey. © 2010 Elsevier Ltd. Source


Heterocyclic aromatic amines (HCAs) in meatballs ready to eat and sold in restaurants in Turkey were determined. A solid phase extraction method was used to isolate HCAs from meatballs. Various HCAs analysed by ultra fast liquid chromatography (UFLC) were varying levels of 2-amino-3-methylimidazo[4,5-f] quinoline (IQ) (up to 1.59 ng/g), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx) (up to 3.81 ng/g), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) (up to 0.66 ng/g), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (not detected or not quantified), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (not detected or not quantified), 2-amino-3,7,8- trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) (up to 0.43 ng/g), 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) (up to 1.93 ng/g), 2-amino-9H-pyrido[2,3-b]indole (AαC) (up to 0.35 ng/g), and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) (up to 0.43 ng/g) in cooked meatballs which are consumed in Turkey. Overall average of total HCA amount was 5.54 ng/g. The present study is to prove that HCAs can be isolated in a very short time (5 min) by using UFLC. © 2010 Elsevier Ltd. All rights reserved. Source


Bozkaya U.,Ataturk University
Journal of Chemical Theory and Computation | Year: 2014

The extended Koopmans' theorem (EKT) provides a systematic way to compute electron affinities (EAs) from any level of theory. Although, it is widely applied to ionization potentials, the EKT approach has not been extensively applied to computations of electron affinities. We present the first benchmarking study to investigate the performances of the EKT methods for predictions of EAs. We assess the performances of the EKT approaches based on orbital-optimized methods [Bozkaya, U. J. Chem. Phys. 2013, 139, 154105], such as the orbital-optimized third-order Møller-Plesset perturbation theory and the orbital-optimized coupled-electron pair theory [OCEPA(0)], and their standard counterparts for EAs of the selected atoms, closed- and open-shell molecules. Especially, results of the OCEPA(0) method (with the aug-cc-pVQZ basis set) for EAs of the considered atoms and molecules are very promising, the corresponding mean absolute errors are 0.14 and 0.17 eV, respectively. © 2014 American Chemical Society. Source

Discover hidden collaborations