Oxford, United Kingdom


Oxford, United Kingdom
Time filter
Source Type

Zieleniewski S.,Astrophysics | Houghton R.C.W.,Astrophysics | Thatte N.,Astrophysics | Davies R.L.,Astrophysics | Vaughan S.P.,Astrophysics
Monthly Notices of the Royal Astronomical Society | Year: 2017

Using the Oxford ShortWavelength Integral Field specTrograph, we trace radial variations of initial mass function (IMF)-sensitive absorption features of three galaxies in the Coma cluster. We obtain resolved spectroscopy of the central 5 kpc for the two central brightest cluster galaxies (BCGs) NGC4889, NGC4874, and the BCG in the south-west group NGC4839, as well as unresolved data for NGC4873 as a low-σ* control.We present radial measurements of the IMF-sensitive features: sodium Na ISDSS, calcium triplet CaT, and iron-hydride FeH0.99, along with the magnesium Mg I0.88 and titanium oxide TiO0.89 features. We employ two separate methods for both telluric correction and sky subtraction around the faint FeH feature to verify our analysis. Within NGC4889 we find strong gradients of Na ISDSS and CaT but a flat FeH profile, which, from comparing to stellar population synthesis models, suggests an old, α-enhanced population with a Chabrier, or even bottom-light IMF. The age and abundance are in line with previous studies but the normal IMF is in contrast to recent results suggesting an increased IMF slope with increased velocity dispersion.We measure flat Na ISDSS and FeH profiles within NGC4874, and determine an old, possibly slightly α-enhanced and Chabrier IMF population. We find an α-enhanced, Chabrier IMF population in NGC4873. Within NGC4839 we measure both strong Na ISDSS and strong FeH, although with a large systematic uncertainty, suggesting a possible heavier IMF. The IMFswe infer for these galaxies are supported by published dynamical modelling. We stress that IMF constraints should be corroborated by further spectral coverage and independent methods on a galaxy-by-galaxy basis. © 2016 The Authors.

Karouzos M.,Seoul National University | Jarvis M.J.,Astrophysics | Jarvis M.J.,University of the Western Cape | Bonfield D.,University of Hertfordshire
Monthly Notices of the Royal Astronomical Society | Year: 2014

There is an ongoing debate concerning the driver of nuclear activity in galaxies, with active galactic nuclei (AGN) either being triggered by major or minor galactic mergers or, alternatively, through secular processes like cold gas accretion and/or formation of bars. We investigate the close environment of active galaxies selected in the X-ray, the radio and the mid-IR. We utilize the first data release of the new near-IR VISTA Deep Extragalactic Observations (VIDEO) survey of the XMM-Large Scale Structure field. We use two measures of environment density, namely counts within a given aperture and a finite redshift slice (pseudo- 3D density) and closest neighbour density measures ∑2 and ∑5. We select both AGN and control samples, matching them in redshift and apparent Ks-band magnitude. We find that AGN are found in a range of environments, with a subset of the AGN samples residing in overdense environments. Seyfert-like X-ray AGN and flat-spectrum radio-AGN are found to inhabit significantly overdense environments compared to their control sample. The relation between overdensities and AGN luminosity does not however reveal any positive correlation. Given the absence of an environment density-AGN luminosity relation, we find no support for a scheme where high-luminosity AGN are preferentially triggered by mergers. On the contrary, we find that AGN likely trace over dense environments at high redshift due to the fact that they inhabit the most massive galaxies, rather than being an AGN. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Wylezalek D.,European Southern Observatory | Vernet J.,European Southern Observatory | De Breuck C.,European Southern Observatory | Stern D.,Jet Propulsion Laboratory | And 9 more authors.
Astrophysical Journal | Year: 2014

We present 4.5 μm luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/Infrared Array Camera (IRAC) color-selected overdensities in the Clusters Around Radio-Loud AGN project, which imaged 420 powerful radio-loud active galactic nuclei (RLAGNs) at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m* + 2, allowing us to measure the faint end slopes of the luminosity functions. We find that α = -1 describes the luminosity function very well in all redshift bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts (zf ∼ 3). We find a slight trend toward fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modeling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ∼ 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of RLAGNs - which have proven to be preferentially located in massive dark matter halos in the richest environments at high redshift - and they may therefore be older and more evolved systems than the general protocluster population. © 2014. The American Astronomical Society. All rights reserved.

Wylezalek D.,Jet Propulsion Laboratory | Wylezalek D.,European Southern Observatory | Galametz A.,National institute for astrophysics | Stern D.,Jet Propulsion Laboratory | And 14 more authors.
Astrophysical Journal | Year: 2013

We report the first results from the Clusters Around Radio-Loud AGN program, a Cycle 7 and 8 Spitzer Space Telescope snapshot program to investigate the environments of a large sample of obscured and unobscured luminous radio-loud active galactic nuclei (AGNs) at 1.2 < z < 3.2. These data, obtained for 387 fields, reach 3.6 and 4.5 μm depths of [3.6]AB = 22.6 and [4.5]AB = 22.9 at the 95% completeness level, which is two to three times fainter than L* in this redshift range. By using the color cut [3.6]-[4.5] > -0.1 (AB), which efficiently selects high-redshift (z > 1.3) galaxies of all types, we identify galaxy cluster member candidates in the fields of the radio-loud AGN. The local density of these Infrared Array Camera (IRAC)-selected sources is compared to the density of similarly selected sources in blank fields. We find that 92% of the radio-loud AGN reside in environments richer than average. The majority (55%) of the radio-loud AGN fields are found to be overdense at a ≥2σ level; 10% are overdense at a ≥5σ level. A clear rise in surface density of IRAC-selected sources toward the position of the radio-loud AGN strongly supports an association of the majority of the IRAC-selected sources with the radio-loud AGN. Our results provide solid statistical evidence that radio-loud AGN are likely beacons for finding high-redshift galaxy (proto-)clusters. We investigate how environment depends on AGN type (unobscured radio-loud quasars versus obscured radio galaxies), radio luminosity and redshift, finding no correlation with either AGN type or radio luminosity. We find a decrease in density with redshift, consistent with galaxy evolution for this uniform, flux-limited survey. These results are consistent with expectations from the orientation-driven AGN unification model, at least for the high radio luminosity regimes considered in this sample. © 2013. The American Astronomical Society. All rights reserved.

Drake A.B.,Liverpool John Moores University | Simpson C.,Liverpool John Moores University | Collins C.A.,Liverpool John Moores University | James P.A.,Liverpool John Moores University | And 13 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2013

We present new results on the cosmic star formation history in the Subaru/XMM-Newton Deep Survey (SXDS)-Ultra Deep Survey (UDS) field out to z = 1.6. We compile narrowband data from the Subaru Telescope and the Visible and Infrared Survey Telescope forAstronomy (VISTA) in conjunction with broad-band data from the SXDS and UDS, to makea selection of 5725 emission-line galaxies in 12 redshift slices, spanning 10 Gyr of cosmictime. We determine photometric redshifts for the sample using 11-band photometry, and usea spectroscopically confirmed subset to fine tune the resultant redshift distribution. We usethe maximum-likelihood technique to determine luminosity functions in each redshift slice and model the selection effects inherent in any narrow-band selection statistically, to obviatethe retrospective corrections ordinarily required. The deep narrow-band data are sensitive tovery low star formation rates (SFRs), and allow an accurate evaluation of the faint end slopeof the Schechter function, α We find that a is particularly sensitive to the assumed faintest broad-band magnitude of a galaxy capable of hosting an emission line, and propose thatthis limit should be empirically motivated. For this analysis, we base our threshold on thelimiting observed equivalent widths of emission lines in the local Universe. We compute thecharacteristic SFR of galaxies in each redshift slice, and the integrated SFR density,ρ SFR. Wefind our results to be in good agreement with the literature and parametrize the evolution of the SFR density as ρ SFR α(1 + z)4.58 confirming a steep decline in star formation activity since z ~ 1.6. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Garn T.,Institute for Astronomy | Sobral D.,Institute for Astronomy | Best P.N.,Institute for Astronomy | Geach J.E.,Durham University | And 7 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2010

We compare Hα, ultraviolet (UV) and infrared (IR) indicators of star formation rate (SFR) for a well-defined sample of z = 0.84 emission-line galaxies from the High-. z Emission Line Survey (HiZELS). Using emission-line, optical, IR, radio and X-ray diagnostics, we estimate that 5-11 per cent of Hα emitters at this redshift are active galactic nuclei. We detect 35 per cent of the Hα emitters individually at 24 μm, and stack the locations of star-forming emitters on deep 24-μm Spitzer Space Telescope images in order to calculate the typical SFRs of our Hα-emitting galaxies. These are compared to the observed Hα line fluxes in order to estimate the extinction at z = 0.84, and we find a significant increase in dust extinction for galaxies with higher SFRs. We demonstrate that the relationship between SFR and extinction found in the local Universe is also suitable for our high-redshift galaxies, and attribute the overall increase in the typical dust extinction for z = 0.84 galaxies to an increase in the average SFR, rather than to a change in dust properties at higher redshift. We calculate the UV extinction, and find a similar dependence on SFR to the Hα results, but no evidence for a 2175 Å UV bump in the dust attenuation law for high-redshift star-forming galaxies. By comparing Hα and UV indicators, we calculate the conversion between the dust attenuation of nebular and stellar radiation, γ, and show that γ = 0.50 ± 0.14. The extinction/SFR relationship is shown to be applicable to galaxies with a range of morphologies and bulge-to-disc ratios, to both merging and non-merging galaxies, and to galaxies within high- and low-density environments, implying that it is a fundamental property of star-forming regions. In order to allow future studies to easily correct for a SFR-dependent amount of dust extinction, we present an equation to predict the extinction of a galaxy, based solely on its observed Hα luminosity, and use this to recalculate the Hα luminosity function and SFR density at z = 0.84. © 2009 The Authors. Journal compilation © 2009 RAS.

Sobral D.,Institute for Astronomy | Sobral D.,Durham University | Best P.N.,Institute for Astronomy | Geach J.E.,Durham University | And 6 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2010

The clustering properties of a well-defined sample of 734 Hα emitters at z= 0.845 ± 0.015, obtained as part of the Hi-z Emission Line Survey, are investigated. The spatial correlation function of these Hα emitters is very well described by the power-law ξ = (r/r0)-1.8, with a real-space correlation, r0, of 2.7 ± 0.3 h-1 Mpc. The correlation length r0 increases strongly with Hα luminosity (LHα), from r0 ∼ 2 h-1 Mpc for the most quiescent galaxies [star formation rates (SFRs) of ∼4 M⊙ yr-1] up to r0 > 5 h-1 Mpc for the brightest galaxies in Hα. The correlation length also increases with increasing rest-frame K-band (MK) luminosity, but the r0-LHα correlation maintains its full statistical significance at fixed MK. At z = 0.84, star-forming galaxies classified as irregulars or mergers are much more clustered than discs and non-mergers, respectively; however, once the samples are matched in LHα and MK, the differences vanish, implying that the clustering is independent of morphological type at z ∼ 1 just as in the local Universe. The typical Hα emitters found at z = 0.84 reside in dark matter haloes of ≈1012 M⊙, but those with the highest SFRs reside in more massive haloes of ≈1013 M⊙. The results are compared with those of Hα surveys at different redshifts: although the break of the Hα luminosity function L*Hα evolves by a factor of ∼30 from z= 0.24 to 2.23, if the Hα luminosities at each redshift are scaled by L*Hα(z) then the correlation lengths indicate that, independently of cosmic time, galaxies with the same (LHα)/L*Hα(z) are found in dark matter haloes of similar masses. This not only confirms that the star formation efficiency in high redshift haloes is higher than locally but also suggests a fundamental connection between the strong negative evolution of L*Hα since z = 2.23 and the quenching of star formation in galaxies residing within dark matter haloes significantly more massive than 1012 M⊙ at any given epoch. © 2010 The Authors. Journal compilation © 2010 RAS.

Sobral D.,Institute for Astronomy | Best P.N.,Institute for Astronomy | Smail I.,Durham University | Geach J.E.,Durham University | And 5 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2011

This paper presents an environment and stellar mass study of a large sample of star-forming Hα emitters at z= 0.84 from the High-z Emission Line Survey (HiZELS), over 1.3 deg 2 split over two fields (COSMOS and UKIDSS UDS). By taking advantage of a truly panoramic coverage of a wide range of environments, from the field to a rich cluster, it is shown that both stellar mass and environment play crucial roles in determining the properties of star-forming galaxies. Specific star formation rates (sSFRs) decline with stellar mass in all environments, and the fraction of Hα star-forming galaxies declines sharply from ≈40 per cent for galaxies with masses around 10 10M ⊙ to effectively zero above 10 11.5M ⊙, confirming that mass-downsizing is generally in place by z∼ 1. The fraction of star-forming galaxies is also found to fall sharply as a function of local environmental density from ≈40 per cent in the field to approaching zero at rich group/cluster densities. When star formation does occur in such high density regions, it is found to be mostly dominated by potential mergers and, indeed, if only non-merging star-forming galaxies are considered, then the environment and mass trends are even stronger and are qualitatively similar at all masses and environments, respectively, as in the local Universe. The median SFR of Hα emitters at z= 0.84 is found to increase with density for both field and intermediate (group or cluster outskirts) densities; this is clearly seen as a change in the faint-end slope of the Hα luminosity function from steep (α≈-1.9), in poor fields, to shallow (α≈-1.1) in groups and clusters. Interestingly, the relation between median SFR and environment is only found for low- to moderate-mass galaxies (with stellar masses below about 10 10.6M ⊙), and is not seen for the most massive star-forming galaxies. Overall, these observations provide a detailed view over a sufficiently large range of mass and environment to reconcile previous observational claims: stellar mass is the primary predictor of star formation activity at z∼ 1, but the environment, while initially enhancing the median SFR of (lower mass) star-forming galaxies, is ultimately responsible for suppressing star formation activity in all galaxies above surface densities of 10-30 Mpc -2 (group and cluster environments). © 2010 The Authors. Journal compilation © 2010 RAS.

Hatch N.A.,University of Nottingham | Wylezalek D.,European Southern Observatory | Kurk J.D.,Max Planck Institute for Extraterrestrial Physics | Stern D.,Jet Propulsion Laboratory | And 11 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2014

Distant powerful radio-loud active galactic nuclei (RLAGN) tend to reside in dense environments and are commonly found in protoclusters at z > 1.3. We examine whether this occurs because RLAGN are hosted by massive galaxies, which preferentially reside in rich environments. We compare the environments of powerful RLAGN at 1.3 < z < 3.2 from the Clusters Around Radio-Loud AGN survey to a sample of radio-quiet galaxies matched in mass and redshift. We find that the environments of RLAGN are significantly denser than those of radio-quiet galaxies, implying that not more than 50 per cent of massive galaxies in this epoch can host powerful radio-loud jets. This is not an observational selection effect as we find no evidence to suggest that it is easier to observe the radio emission when the galaxy resides in a dense environment. We therefore suggest that the dense Mpc-scale environment fosters the formation of a radio jet from an AGN.We show that the number density of potential RLAGN host galaxies is consistent with every>1014M cluster having experienced powerful radio-loud feedback of duration ~60 Myr during 1.3 < z<3.2. This feedback could heat the intracluster medium to the extent of 0.5-1 keV per gas particle, which could limit the amount of gas available for further star formation in the protocluster galaxies. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Vardoulaki E.,Astrophysics | Rawlings S.,Astrophysics | Hill G.J.,University of Texas at Austin | Mauch T.,Astrophysics | And 5 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2010

We present optical spectroscopy, near-infrared (mostly K-band) and radio (151-MHz and 1.4-GHz) imaging of the first complete region (TOOT00) of the TexOx-1000 (TOOT) redshift survey of radio sources. The 0.0015-sr (∼5 deg2) TOOT00 region is selected from pointed observations of the Cambridge Low-Frequency Survey Telescope at 151 MHz at a flux density limit of ≃100 mJy, approximately five times fainter than the 7C Redshift Survey (7CRS), and contains 47 radio sources. We have obtained 40 spectroscopic redshifts (∼85 per cent completeness). Adding redshifts estimated for the seven other cases yields a median redshift zmed ∼ 1.25. We find a significant population of objects with Fanaroff-Riley type I (FRI) like radio structures at radio luminosities above both the low-redshift FRI/II break and the break in the radio luminosity function. The redshift distribution and subpopulations of TOOT00 are broadly consistent with extrapolations from the 7CRS/6CE/3CRR data sets underlying the SKADS Simulated Skies Semi-Empirical Extragalactic Data base, S3-SEX. © 2009 RAS.

Loading Astrophysics collaborators
Loading Astrophysics collaborators