Time filter

Source Type

Oxford, United Kingdom

Garn T.,Institute for Astronomy | Sobral D.,Institute for Astronomy | Best P.N.,Institute for Astronomy | Geach J.E.,Durham University | And 7 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2010

We compare Hα, ultraviolet (UV) and infrared (IR) indicators of star formation rate (SFR) for a well-defined sample of z = 0.84 emission-line galaxies from the High-. z Emission Line Survey (HiZELS). Using emission-line, optical, IR, radio and X-ray diagnostics, we estimate that 5-11 per cent of Hα emitters at this redshift are active galactic nuclei. We detect 35 per cent of the Hα emitters individually at 24 μm, and stack the locations of star-forming emitters on deep 24-μm Spitzer Space Telescope images in order to calculate the typical SFRs of our Hα-emitting galaxies. These are compared to the observed Hα line fluxes in order to estimate the extinction at z = 0.84, and we find a significant increase in dust extinction for galaxies with higher SFRs. We demonstrate that the relationship between SFR and extinction found in the local Universe is also suitable for our high-redshift galaxies, and attribute the overall increase in the typical dust extinction for z = 0.84 galaxies to an increase in the average SFR, rather than to a change in dust properties at higher redshift. We calculate the UV extinction, and find a similar dependence on SFR to the Hα results, but no evidence for a 2175 Å UV bump in the dust attenuation law for high-redshift star-forming galaxies. By comparing Hα and UV indicators, we calculate the conversion between the dust attenuation of nebular and stellar radiation, γ, and show that γ = 0.50 ± 0.14. The extinction/SFR relationship is shown to be applicable to galaxies with a range of morphologies and bulge-to-disc ratios, to both merging and non-merging galaxies, and to galaxies within high- and low-density environments, implying that it is a fundamental property of star-forming regions. In order to allow future studies to easily correct for a SFR-dependent amount of dust extinction, we present an equation to predict the extinction of a galaxy, based solely on its observed Hα luminosity, and use this to recalculate the Hα luminosity function and SFR density at z = 0.84. © 2009 The Authors. Journal compilation © 2009 RAS. Source

Sobral D.,Institute for Astronomy | Sobral D.,Durham University | Best P.N.,Institute for Astronomy | Geach J.E.,Durham University | And 6 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2010

The clustering properties of a well-defined sample of 734 Hα emitters at z= 0.845 ± 0.015, obtained as part of the Hi-z Emission Line Survey, are investigated. The spatial correlation function of these Hα emitters is very well described by the power-law ξ = (r/r0)-1.8, with a real-space correlation, r0, of 2.7 ± 0.3 h-1 Mpc. The correlation length r0 increases strongly with Hα luminosity (LHα), from r0 ∼ 2 h-1 Mpc for the most quiescent galaxies [star formation rates (SFRs) of ∼4 M⊙ yr-1] up to r0 > 5 h-1 Mpc for the brightest galaxies in Hα. The correlation length also increases with increasing rest-frame K-band (MK) luminosity, but the r0-LHα correlation maintains its full statistical significance at fixed MK. At z = 0.84, star-forming galaxies classified as irregulars or mergers are much more clustered than discs and non-mergers, respectively; however, once the samples are matched in LHα and MK, the differences vanish, implying that the clustering is independent of morphological type at z ∼ 1 just as in the local Universe. The typical Hα emitters found at z = 0.84 reside in dark matter haloes of ≈1012 M⊙, but those with the highest SFRs reside in more massive haloes of ≈1013 M⊙. The results are compared with those of Hα surveys at different redshifts: although the break of the Hα luminosity function L*Hα evolves by a factor of ∼30 from z= 0.24 to 2.23, if the Hα luminosities at each redshift are scaled by L*Hα(z) then the correlation lengths indicate that, independently of cosmic time, galaxies with the same (LHα)/L*Hα(z) are found in dark matter haloes of similar masses. This not only confirms that the star formation efficiency in high redshift haloes is higher than locally but also suggests a fundamental connection between the strong negative evolution of L*Hα since z = 2.23 and the quenching of star formation in galaxies residing within dark matter haloes significantly more massive than 1012 M⊙ at any given epoch. © 2010 The Authors. Journal compilation © 2010 RAS. Source

Sobral D.,Institute for Astronomy | Best P.N.,Institute for Astronomy | Smail I.,Durham University | Geach J.E.,Durham University | And 5 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2011

This paper presents an environment and stellar mass study of a large sample of star-forming Hα emitters at z= 0.84 from the High-z Emission Line Survey (HiZELS), over 1.3 deg 2 split over two fields (COSMOS and UKIDSS UDS). By taking advantage of a truly panoramic coverage of a wide range of environments, from the field to a rich cluster, it is shown that both stellar mass and environment play crucial roles in determining the properties of star-forming galaxies. Specific star formation rates (sSFRs) decline with stellar mass in all environments, and the fraction of Hα star-forming galaxies declines sharply from ≈40 per cent for galaxies with masses around 10 10M ⊙ to effectively zero above 10 11.5M ⊙, confirming that mass-downsizing is generally in place by z∼ 1. The fraction of star-forming galaxies is also found to fall sharply as a function of local environmental density from ≈40 per cent in the field to approaching zero at rich group/cluster densities. When star formation does occur in such high density regions, it is found to be mostly dominated by potential mergers and, indeed, if only non-merging star-forming galaxies are considered, then the environment and mass trends are even stronger and are qualitatively similar at all masses and environments, respectively, as in the local Universe. The median SFR of Hα emitters at z= 0.84 is found to increase with density for both field and intermediate (group or cluster outskirts) densities; this is clearly seen as a change in the faint-end slope of the Hα luminosity function from steep (α≈-1.9), in poor fields, to shallow (α≈-1.1) in groups and clusters. Interestingly, the relation between median SFR and environment is only found for low- to moderate-mass galaxies (with stellar masses below about 10 10.6M ⊙), and is not seen for the most massive star-forming galaxies. Overall, these observations provide a detailed view over a sufficiently large range of mass and environment to reconcile previous observational claims: stellar mass is the primary predictor of star formation activity at z∼ 1, but the environment, while initially enhancing the median SFR of (lower mass) star-forming galaxies, is ultimately responsible for suppressing star formation activity in all galaxies above surface densities of 10-30 Mpc -2 (group and cluster environments). © 2010 The Authors. Journal compilation © 2010 RAS. Source

Ciardullo R.,Pennsylvania State University | Gronwall C.,Pennsylvania State University | Adams J.J.,University of Texas at Austin | Adams J.J.,Carnegie Institution of Washington | And 13 more authors.
Astrophysical Journal | Year: 2013

We present an analysis of the luminosities and equivalent widths of the 284 z < 0.56 [O II]-emitting galaxies found in the 169 arcmin2 pilot survey for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). By combining emission-line fluxes obtained from the Mitchell spectrograph on the McDonald 2.7 m telescope with deep broadband photometry from archival data, we derive each galaxy's dereddened [O II] λ3727 luminosity and calculate its total star formation rate. We show that over the last ∼5 Gyr of cosmic time, there has been substantial evolution in the [O II] emission-line luminosity function, with L* decreasing by ∼0.6 ± 0.2 dex in the observed function, and by ∼0.9 ± 0.2 dex in the dereddened relation. Accompanying this decline is a significant shift in the distribution of [O II] equivalent widths, with the fraction of high equivalent-width emitters declining dramatically with time. Overall, the data imply that the relative intensity of star formation within galaxies has decreased over the past ∼5 Gyr, and that the star formation rate density of the universe has declined by a factor of ∼2.5 between z ∼ 0.5 and z ∼ 0. These observations represent the first [O II]-based star formation rate density measurements in this redshift range, and foreshadow the advancements which will be generated by the main HETDEX survey. © 2013. The American Astronomical Society. All rights reserved. Source

Vardoulaki E.,Astrophysics | Rawlings S.,Astrophysics | Hill G.J.,University of Texas at Austin | Mauch T.,Astrophysics | And 5 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2010

We present optical spectroscopy, near-infrared (mostly K-band) and radio (151-MHz and 1.4-GHz) imaging of the first complete region (TOOT00) of the TexOx-1000 (TOOT) redshift survey of radio sources. The 0.0015-sr (∼5 deg2) TOOT00 region is selected from pointed observations of the Cambridge Low-Frequency Survey Telescope at 151 MHz at a flux density limit of ≃100 mJy, approximately five times fainter than the 7C Redshift Survey (7CRS), and contains 47 radio sources. We have obtained 40 spectroscopic redshifts (∼85 per cent completeness). Adding redshifts estimated for the seven other cases yields a median redshift zmed ∼ 1.25. We find a significant population of objects with Fanaroff-Riley type I (FRI) like radio structures at radio luminosities above both the low-redshift FRI/II break and the break in the radio luminosity function. The redshift distribution and subpopulations of TOOT00 are broadly consistent with extrapolations from the 7CRS/6CE/3CRR data sets underlying the SKADS Simulated Skies Semi-Empirical Extragalactic Data base, S3-SEX. © 2009 RAS. Source

Discover hidden collaborations