Entity

Time filter

Source Type


Lee J.J.,Astronomy and Space Science Institute | Parks G.K.,University of California | Lee E.,Kyung Hee University | Tsurutani B.T.,Jet Propulsion Laboratory | And 6 more authors.
Annales Geophysicae | Year: 2012

Electron microburst energy spectra in the range of 170 keV to 360 keV have been measured using two solid-state detectors onboard the low-altitude (680 km), polar-orbiting Korean STSAT-1 (Science and Technology SATellite-1). Applying a unique capability of the spacecraft attitude control system, microburst energy spectra have been accurately resolved into two components: perpendicular to and parallel to the geomagnetic field direction. The former measures trapped electrons and the latter those electrons with pitch angles in the loss cone and precipitating into atmosphere. It is found that the perpendicular component energy spectra are harder than the parallel component and the loss cone is not completely filled by the electrons in the energy range of 170 keV to 360 keV. These results have been modeled assuming a wave-particle cyclotron resonance mechanism, where higher energy electrons travelling within a magnetic flux tube interact with whistler mode waves at higher latitudes (lower altitudes). Our results suggest that because higher energy (relativistic) microbursts do not fill the loss cone completely, only a small portion of electrons is able to reach low altitude (∼100 km) atmosphere. Thus assuming that low energy microbursts and relativistic microbursts are created by cyclotron resonance with chorus elements (but at different locations), the low energy portion of the microburst spectrum will dominate at low altitudes. This explains why relativistic microbursts have not been observed by balloon experiments, which typically float at altitudes of ∼30 km and measure only X-ray flux produced by collisions between neutral atmospheric particles and precipitating electrons. © Author(s) 2012. Source


Cho M.,GSMT Program Office | Corredor A.,University of Arizona | Dribusch C.,University of Arizona | Park K.,Astronomy and Space Science Institute | And 2 more authors.
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2011

The Giant Magellan Telescope (GMT) will be a 25m class telescope which is one of the extremely large telescope projects in the design and development phase. The GMT will have two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). Both secondary mirrors are 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The FSM has a tip-tilt feature to compensate image motions from the telescope structure jitters and the wind buffeting. The support system of the lightweight mirror consists of three axial actuators, one lateral support at the center, and a vacuum system. A parametric study and optimization of the FSM mirror blank and central lateral flexure design were performed. This paper reports the results of the trade study. The optical image qualities and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances will be discussed for the case of a lightweighted segment with a center thickness of 140 mm weighing approximately 105 kg. © 2011 SPIE. Source

Discover hidden collaborations