Time filter

Source Type

Saint, France

Mousis O.,University of Franche Comte | Hueso R.,University of the Basque Country | Beaulieu J.-P.,French National Center for Scientific Research | Bouley S.,University Paris - Sud | And 58 more authors.
Experimental Astronomy | Year: 2014

Amateur contributions to professional publications have increased exponentially over the last decades in the field of planetary astronomy. Here we review the different domains of the field in which collaborations between professional and amateur astronomers are effective and regularly lead to scientific publications.We discuss the instruments, detectors, software and methodologies typically used by amateur astronomers to collect the scientific data in the different domains of interest. Amateur contributions to the monitoring of planets and interplanetary matter, characterization of asteroids and comets, as well as the determination of the physical properties of Kuiper Belt Objects and exoplanets are discussed. © 2014, Springer Science+Business Media Dordrecht.

Marciniak A.,Adam Mickiewicz University | Bartczak P.,Adam Mickiewicz University | Santana-Ros T.,Adam Mickiewicz University | Michalowski T.,Adam Mickiewicz University | And 31 more authors.
Astronomy and Astrophysics | Year: 2012

Context. The shapes and spin states of asteroids observed with photometric techniques can be reconstructed using the lightcurve inversion method. The resultant models can then be confirmed or exploited further by other techniques, such as adaptive optics, radar, thermal infrared, stellar occultations, or space probe imaging. Aims. During our ongoing work to increase the set of asteroids with known spin and shape parameters, there appeared a need for displaying the model plane-of-sky orientations for specific epochs to compare models from different techniques. It would also be instructive to be able to track how the complex lightcurves are produced by various asteroid shapes. Methods. Basing our analysis on an extensive photometric observational dataset, we obtained eight asteroid models with the convex lightcurve inversion method. To enable comparison of the photometric models with those from other observing/modelling techniques, we created an on-line service where we allow the inversion models to be orientated interactively. Results. Our sample of objects is quite representative, containing both relatively fast and slow rotators with highly and lowly inclined spin axes. With this work, we increase the sample of asteroid spin and shape models based on disk-integrated photometry to over 200. Three of the shape models obtained here are confirmed by the stellar occultation data; this also allowed independent determinations of their sizes to be made. Conclusions. The ISAM service can be widely exploited for past and future asteroid observations with various, complementary techniques and for asteroid dimension determination. © 2012 ESO.

Hanus J.,Charles University | Durech J.,Charles University | Broz M.,Charles University | Marciniak A.,Adam Mickiewicz University | And 70 more authors.
Astronomy and Astrophysics | Year: 2013

Context. The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties. Aims. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions. Methods. We used classical dense photometric lightcurves from several sources (Uppsala Asteroid Photometric Catalogue, Palomar Transient Factory survey, and from individual observers) and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper. Results. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetic and observed pole-latitude distributions, we were able to constrain the typical values of the c YORP parameter as between 0.05 and 0.6. © 2013 ESO.

Discover hidden collaborations