Time filter

Source Type

Banerjee S.,Medical University of Vienna | Resch Y.,Medical University of Vienna | Chen K.-W.,Medical University of Vienna | Swoboda I.,Medical University of Vienna | And 24 more authors.
Journal of Investigative Dermatology | Year: 2015

House dust mites (HDMs) belong to the most potent indoor allergen sources worldwide and are associated with allergic manifestations in the respiratory tract and the skin. Here we studied the importance of the high-molecular-weight group 11 allergen from Dermatophagoides pteronyssinus (Der p 11) in HDM allergy. Sequence analysis showed that Der p 11 has high homology to paramyosins from mites, ticks, and other invertebrates. A synthetic gene coding for Der p 11 was expressed in Escherichia coli and rDer p 11 purified to homogeneity as folded, alpha-helical protein as determined by circular dichroism spectroscopy. Using antibodies raised against rDer p 11 and immunogold electron microscopy, the allergen was localized in the muscle beneath the skin of mite bodies but not in feces. IgE reactivity of rDer p 11 was tested with sera from HDM-allergic patients from Europe and Africa in radioallergosorbent test-based dot-blot assays. Interestingly, we found that Der p 11 is a major allergen for patients suffering from atopic dermatitis (AD), whereas it is only a minor allergen for patients suffering from respiratory forms of HDM allergy. Thus, rDer p 11 might be a useful serological marker allergen for the identification of a subgroup of HDM-allergic patients suffering from HDM-associated AD. © 2015 The Society for Investigative Dermatology.

Offermann L.R.,University of South Carolina | Giangrieco I.,CNR Institute of Neuroscience | Perdue M.L.,University of South Carolina | Zuzzi S.,Center for Molecular Allergology | And 9 more authors.
Journal of Agricultural and Food Chemistry | Year: 2015

Kiwellin (Act d 5) is an allergenic protein contained in kiwifruit pulp in high amounts. The aim of this study was to investigate the three-dimensional structure of the natural molecule from green kiwifruit and its possible function. Kiwellin was crystallized, and its structure, including post-translational modifications, was elucidated. The molecular weight and structural features, in solution, were analyzed by gel filtration and circular dichroism, respectively. Although structurally similar to expansin, kiwellin lacks expansin activity and carbohydrate binding. A specific algorithm was applied to investigate any possible IgE reactivity correlation between kiwellin and a panel of 102 allergens, including expansins and other carbohydrate-binding allergens. The available data suggest a strong dependence of the kiwellin structure on the environmental/experimental conditions. This dependence therefore poses challenges in detecting the correlations between structural, functional, and immunological features of this protein. © 2015 American Chemical Society.

Loading Associated Centers for Molecular Allergology collaborators
Loading Associated Centers for Molecular Allergology collaborators