Salt Lake City, UT, United States
Salt Lake City, UT, United States

Time filter

Source Type

Patent
Artemis Health | Date: 2011-01-24

Methods and kits for selectively enriching non-random polynucleotide sequences are provided. Methods and kits for generating libraries of sequences are provided. Methods of using selectively enriched non-random polynucleotide sequences for detection of fetal aneuploidy are provided.


Patent
Artemis Health | Date: 2010-03-31

The present invention provides apparatus and methods for enriching components or cells from a sample and conducting genetic analysis, such as SNP genotyping to provide diagnostic results for fetal disorders or conditions.


The present invention relates to methods comprising whole genome sequencing for identifying polymorphisms in samples comprising mixtures of genomes, and for determining and/or monitoring the presence or absence of disorders associated with the identified polymorphisms.


The present invention provides systems, apparatuses, and methods to detect the presence of fetal cells when mixed with a population of maternal cells in a sample and to test fetal abnormalities, i.e. aneuploidy. In addition, the present invention provides methods to determine when there are insufficient fetal cells for a determination and report a non-informative case. The present invention involves quantifying regions of genomic DNA from a mixed sample. More particularly the invention involves quantifying DNA polymorphisms from the mixed sample.


Patent
Artemis Health | Date: 2010-03-31

The present invention provides apparatus and methods for enriching components or cells from a sample and conducting genetic analysis, such as SNP genotyping to provide diagnostic results for fetal disorders or conditions.


The present invention provides a method capable of detecting single or multiple fetal chromosomal aneuploidies in a maternal sample comprising fetal and maternal nucleic acids, and verifying that the correct determination has been made. The method is applicable to determining copy number variations (CNV) of any sequence of interest in samples comprising mixtures of genomic nucleic acids derived from two different genomes, and which are known or are suspected to differ in the amount of one or more sequence of interest. The method is applicable at least to the practice of noninvasive prenatal diagnostics, and to the diagnosis and monitoring of conditions associated with a difference in sequence representation in healthy versus diseased individuals.


Patent
Artemis Health | Date: 2010-07-30

Fragile cells have value for use in diagnosing many types of conditions. There is a need for compositions that stabilize fragile cells. The stabilization compositions of the provided invention allow for the stabilization, enrichment, and analysis of fragile cells, including fetal cells, circulating tumor cells, and stem cells.


Patent
Artemis Health | Date: 2011-01-19

Methods are disclosed for resolving measurement problems such problems in measuring chromosomal copy number. Some disclosed methods involve first selecting a primary assay element characteristic to partition. Such characteristic may be a source of experimental variability such as the GC content of measured DNA sequences. Additionally, the disclosed methods may employ an abundance or copy number function to transform the assay element frequencies into an abundance, dose, copy number score, or the like. In some cases, the disclosed methods estimate an amount of certain fetal DNA in a sample. The methods can further compare the estimated amount to a measured amount of fetal DNA in the sample. The comparison can be used to determine the fetal sex or aneuploidy.


The present invention provides systems, apparatuses, and methods to detect the presence of fetal cells when mixed with a population of maternal cells in a sample and to test fetal abnormalities, i.e. aneuploidy. In addition, the present invention provides methods to determine when there are insufficient fetal cells for a determination and report a non-informative case. The present invention involves quantifying regions of genomic DNA from a mixed sample. More particularly the invention involves quantifying DNA polymorphisms from the mixed sample.


Loading Artemis Health collaborators
Loading Artemis Health collaborators