Orlando, FL, United States
Orlando, FL, United States

Time filter

Source Type

Price C.T.,Orlando Health | Ramo B.A.,Arnold Palmer Hospital for Children
Orthopedic Clinics of North America | Year: 2012

Current efforts for prevention of hip dysplasia are primarily focused on early detection and early intervention to avoid long-term consequences of neglected hip dysplasia. True prevention efforts would eliminate the disorder before it develops. Better prevention may be possible by decreasing postnatal environmental factors that influence the development of hip dysplasia. This article reviews the natural history, prevalence, and etiology of hip dysplasia along with current methodologies for early diagnosis and possible considerations for prevention of neonatal hip instability and adult acetabular dysplasia. © 2012 Elsevier Inc.


News Article | February 27, 2017
Site: phys.org

The technology developed by UCF scientist Aristide Dogariu uses an optical fiber to beam light through a patient's blood and interpret the signals that bounce back. Researchers believe that in some situations it could replace the need for doctors to wait while blood is drawn from a patient and tested. "I absolutely see the technique having potential in the intensive care setting, where it can be part of saving the lives of critically ill patients with all kinds of other disorders," said Dr. William DeCampli, who is chief of pediatric cardiac surgery at Arnold Palmer Hospital for Children a professor at the UCF College of Medicine. DeCampli helped develop the technology and test it during surgery on infants. During surgery, physicians are wary of the patient's blood coagulating, or clotting, too quickly. A clot can lead to life-threatening conditions such as stroke or pulmonary embolism. Coagulation is of particular concern during cardiovascular surgery, when a clot can shut down the heart-lung machine used to circulate the patient's blood. Doctors administer blood-thinning medication to prevent coagulation. But every 20-30 minutes, blood must be withdrawn and taken to a lab for a test that can take up to 10 minutes. That's a slow process with gaps of time without up-to-date information, especially in operations that can last four hours or more. Dogariu, a Pegasus Professor in UCF's College of Optics & Photonics, developed a machine with an optical fiber that can tap directly into the tubes of the heart-lung machine. The optical fiber beams light at the blood passing through the tube and detects the light as it bounces back. As reported in a paper published recently in the journal Nature Biomedical Engineering, the machine constantly interprets the light's back-scatter to determine how rapidly red blood cells are vibrating. Slow vibration is a sign blood is coagulating and a blood-thinner may be needed. The technology can alert doctors at the first sign of clotting, and provide nonstop information throughout a long procedure. "It provides continuous feedback for the surgeon to make a decision on medication," Dogariu said. "That is what's new. Continuous, real-time monitoring is not available today. That is what our machine does, and in surgeries that can last for hours, this information can be critical." Over the past year, DeCampli tested the technology during cardiac surgeries on 10 infants at Arnold Palmer Hospital for Children, which consistently ranks among the best centers in the nation for pediatric cardiac surgery and is the leading center in Orlando. The successful tests were the end result of a relationship facilitated by UCF, DeCampli said. DeCampli, who has also been a professor of surgery at the UCF College of Medicine since its inception 10 years ago, noted that the university encourages interdisciplinary collaboration among its faculty as a way to spark innovative breakthroughs. That's how he came to work with Dogariu, who has spent years researching the application of light-detection technology in industrial uses like the manufacture of semiconductors and paints. "These things come about because of collaboration between a top-ranked engineering university and a top-ranked children's hospital all in one city," DeCampli said. "I think it's the perfect way to make advances in medicine that are at the engineering frontiers." Their recently published paper is based on a small, proof-of-concept study. A larger study is in the works. Explore further: New technology detects blood clots with simple in-home test More information: J. R. Guzman-Sepulveda et al, Real-time intraoperative monitoring of blood coagulability via coherence-gated light scattering, Nature Biomedical Engineering (2017). DOI: 10.1038/s41551-017-0028


Joseph B.,Kasturba Medical College | Price C.T.,Arnold Palmer Hospital for Children | Price C.T.,University of Central Florida
Orthopedic Clinics of North America | Year: 2011

The aim of treatment of Perthes in the early part of the disease is to prevent the femoral head from getting deformed by muscular forces and weight-bearing stresses transmitted across the acetabular margin. To achieve this, femoral head extrusion must be preempted in children who are older than 8 years at onset of the disease by ensuring containment as soon as the disease is diagnosed. In children younger than 8 years in whom femoral head extrusion occurs, containment must be obtained by the early stage of fragmentation. © 2011 Elsevier Inc.


News Article | February 28, 2017
Site: www.rdmag.com

A University of Central Florida professor has invented a way to use light to continuously monitor a surgical patient's blood, for the first time providing a real-time status during life-and-death operations. The technology developed by UCF scientist Aristide Dogariu uses an optical fiber to beam light through a patient's blood and interpret the signals that bounce back. Researchers believe that in some situations it could replace the need for doctors to wait while blood is drawn from a patient and tested. "I absolutely see the technique having potential in the intensive care setting, where it can be part of saving the lives of critically ill patients with all kinds of other disorders," said Dr. William DeCampli, who is chief of pediatric cardiac surgery at Arnold Palmer Hospital for Children a professor at the UCF College of Medicine. DeCampli helped develop the technology and test it during surgery on infants. During surgery, physicians are wary of the patient's blood coagulating, or clotting, too quickly. A clot can lead to life-threatening conditions such as stroke or pulmonary embolism. Coagulation is of particular concern during cardiovascular surgery, when a clot can shut down the heart-lung machine used to circulate the patient's blood. Doctors administer blood-thinning medication to prevent coagulation. But every 20-30 minutes, blood must be withdrawn and taken to a lab for a test that can take up to 10 minutes. That's a slow process with gaps of time without up-to-date information, especially in operations that can last four hours or more. Dogariu, a Pegasus Professor in UCF's College of Optics & Photonics, developed a machine with an optical fiber that can tap directly into the tubes of the heart-lung machine. The optical fiber beams light at the blood passing through the tube and detects the light as it bounces back. As reported in a paper published recently in the journal Nature Biomedical Engineering, the machine constantly interprets the light's back-scatter to determine how rapidly red blood cells are vibrating. Slow vibration is a sign blood is coagulating and a blood-thinner may be needed. The technology can alert doctors at the first sign of clotting, and provide nonstop information throughout a long procedure. "It provides continuous feedback for the surgeon to make a decision on medication," Dogariu said. "That is what's new. Continuous, real-time monitoring is not available today. That is what our machine does, and in surgeries that can last for hours, this information can be critical." Over the past year, DeCampli tested the technology during cardiac surgeries on 10 infants at Arnold Palmer Hospital for Children, which consistently ranks among the best centers in the nation for pediatric cardiac surgery and is the leading center in Orlando. The successful tests were the end result of a relationship facilitated by UCF, DeCampli said. DeCampli, who has also been a professor of surgery at the UCF College of Medicine since its inception 10 years ago, noted that the university encourages interdisciplinary collaboration among its faculty as a way to spark innovative breakthroughs. That's how he came to work with Dogariu, who has spent years researching the application of light-detection technology in industrial uses like the manufacture of semiconductors and paints. "These things come about because of collaboration between a top-ranked engineering university and a top-ranked children's hospital all in one city," DeCampli said. "I think it's the perfect way to make advances in medicine that are at the engineering frontiers." Their recently published paper is based on a small, proof-of-concept study. A larger study is in the works.


News Article | February 27, 2017
Site: www.eurekalert.org

A University of Central Florida professor has invented a way to use light to continuously monitor a surgical patient's blood, for the first time providing a real-time status during life-and-death operations. The technology developed by UCF scientist Aristide Dogariu uses an optical fiber to beam light through a patient's blood and interpret the signals that bounce back. Researchers believe that in some situations it could replace the need for doctors to wait while blood is drawn from a patient and tested. "I absolutely see the technique having potential in the intensive care setting, where it can be part of saving the lives of critically ill patients with all kinds of other disorders," said Dr. William DeCampli, who is chief of pediatric cardiac surgery at Arnold Palmer Hospital for Children a professor at the UCF College of Medicine. DeCampli helped develop the technology and test it during surgery on infants. During surgery, physicians are wary of the patient's blood coagulating, or clotting, too quickly. A clot can lead to life-threatening conditions such as stroke or pulmonary embolism. Coagulation is of particular concern during cardiovascular surgery, when a clot can shut down the heart-lung machine used to circulate the patient's blood. Doctors administer blood-thinning medication to prevent coagulation. But every 20-30 minutes, blood must be withdrawn and taken to a lab for a test that can take up to 10 minutes. That's a slow process with gaps of time without up-to-date information, especially in operations that can last four hours or more. Dogariu, a Pegasus Professor in UCF's College of Optics & Photonics, developed a machine with an optical fiber that can tap directly into the tubes of the heart-lung machine. The optical fiber beams light at the blood passing through the tube and detects the light as it bounces back. As reported in a paper published recently in the journal Nature Biomedical Engineering, the machine constantly interprets the light's back-scatter to determine how rapidly red blood cells are vibrating. Slow vibration is a sign blood is coagulating and a blood-thinner may be needed. The technology can alert doctors at the first sign of clotting, and provide nonstop information throughout a long procedure. "It provides continuous feedback for the surgeon to make a decision on medication," Dogariu said. "That is what's new. Continuous, real-time monitoring is not available today. That is what our machine does, and in surgeries that can last for hours, this information can be critical." Over the past year, DeCampli tested the technology during cardiac surgeries on 10 infants at Arnold Palmer Hospital for Children, which consistently ranks among the best centers in the nation for pediatric cardiac surgery and is the leading center in Orlando. The successful tests were the end result of a relationship facilitated by UCF, DeCampli said. DeCampli, who has also been a professor of surgery at the UCF College of Medicine since its inception 10 years ago, noted that the university encourages interdisciplinary collaboration among its faculty as a way to spark innovative breakthroughs. That's how he came to work with Dogariu, who has spent years researching the application of light-detection technology in industrial uses like the manufacture of semiconductors and paints. "These things come about because of collaboration between a top-ranked engineering university and a top-ranked children's hospital all in one city," DeCampli said. "I think it's the perfect way to make advances in medicine that are at the engineering frontiers." Their recently published paper is based on a small, proof-of-concept study. A larger study is in the works.


News Article | February 21, 2017
Site: www.gizmag.com

Marathon surgery can be dangerous enough without the threat of blood clots forming in the patient. To counter that, surgeons administer blood thinning drugs throughout a procedure, but knowing when to do so often requires a separate lab test, which slows down the surgery. By shining light through the patient's blood, researchers at the University of Central Florida (UCF) have developed a new system that gives surgeons real-time feedback and alerts them at the first sign of a clot. Although they're handy for stopping you bleeding out every time you stub your toe, blood clots are troublemakers when they form inside the body. Strokes and pulmonary embolisms can occur as a result, or during surgery they can clog the cardiopulmonary bypass pump – a machine that does the job of the heart and lungs while surgeons are working on those organs. To keep the blood pumping properly, doctors use blood thinners, but even then, a blood test is still required every half hour or so. That process can take up to 10 minutes in a lab, leaving the surgeons with large gaps in their knowledge of the patient's health, and during procedures that last several hours, those gaps add up to a lot of wasted time and unnecessary risk. But the UCF team's new device removes the need for that process altogether. Instead, a patient's blood can be continuously scanned for the first signs of clotting throughout an operation, keeping the surgeons free to focus on the task at hand. By hooking an optical fiber up to a heart-lung machine, the system can shine a light into the blood as it's pumped through the tubes, and monitor how that light is bounced back to the instrument. If it detects that the vibrations of the red blood cells are slowing down, a clot is starting to form and it's time for a new dose of the blood thinning medication. "It provides continuous feedback for the surgeon to make a decision on medication," says Aristide Dogariu, inventor of the technology. "That is what's new. Continuous, real-time monitoring is not available today. That is what our machine does, and in surgeries that can last for hours, this information can be critical." So far, the device has been tested during 10 procedures on infants at the Arnold Palmer Hospital for Children in Orlando, with promising results. Having proven the concept, the team is now working on expanding the study. "I absolutely see the technique having potential in the intensive care setting, where it can be part of saving the lives of critically ill patients with all kinds of other disorders," says William DeCampli, a pediatric surgeon at Arnold Palmer and co-author of the study.


Boyette M.Y.,Arnold Palmer Hospital for Children | Herrera-Soto J.A.,Arnold Palmer Hospital for Children
Orthopedics | Year: 2012

Nonunion of fractures or osteotomies in the pediatric population is rare. The gold standard for the treatment of nonunions involves harvesting autologous iliac crest bone graft and sometimes internal fixation, which are invasive procedures. The purpose of this study was to evaluate the effectiveness of pulsed electromagnetic field on a nonunited fracture or osteotomy in the pediatric population. A retrospective study was performed on all patients at the authors' institution who used pulsed electromagnetic field as part of their treatment for nonunion or delayed union. Success of the initial nonunion treatment was defined as complete union of the fracture or osteotomy site. Two types of treatment were administered once delayed bone healing was identified: pulsed electromagnetic field alone or pulsed electromagnetic field plus an adjunct treatment. Twenty-one patients were included; 8 osteotomies and 14 fractures developed a nonunion. Average patient age was 11.7 years. Average age for patients who healed with the initial treatment was 10.7 years, whereas nonhealers had an average age of 14 years. Eighty-nine percent of osteotomy nonunions healed with their first management. Fifty-seven percent of fracture nonunions healed at the first attempt. The use of pulsed electromagnetic field is a good option for the initial treatment of pediatric nonunions, especially for patients who develop nonunions secondary to osteotomies. Adding bone marrow aspiration improves the outcomes and is minimally invasive compared with autologous iliac crest bone graft, with no complications.


Tetralogy of Fallot with pulmonary atresia and diminutive or absent intrapericardial pulmonary arteries is a rare congenital abnormality, with high morbidity and mortality. Despite great advances in surgical- and catheter-based therapies, management remains challenging and controversial. We describe the surgical methods and the results from our institution. We performed a retrospective study of the medical records of patients included in our institutional database with tetralogy and pulmonary atresia, concentrating on those predominantly managed by our programme over their lifetime. We obtained demographics and records of all catheterisations and operations, and established mortality. We assessed the current state of those surviving in terms of clinical function at their most recent clinical evaluation and right ventricular function by echocardiography. We assessed 38 patients, with 89% follow-up. The mean number of catheterisations for each patients was 5, with a range from 1 to 15. The mean number of operations was 2.2, with a range from 1 to 6. Unifocalisation had been performed in 26 patients, with 12 undergoing procedures to recruit the native pulmonary vasculature. Of the overall cohort, eight patients died. The ventricular septal defect had been closed in all but two patients. Most patients have no or mild exercise intolerance. Right ventricle dysfunction has been a continuing hazard for 15 years. An individualised approach, using unifocalisation as well as aggressive attempts to recruit the available native pulmonary vasculature, achieves outcomes in the intermediate term superior to the natural history of the lesions, and comparable with those of other studies.


Wiemann J.M.,Spinal USA | Shah S.A.,DuPont Company | Price C.T.,Arnold Palmer Hospital for Children
Journal of Pediatric Orthopaedics | Year: 2014

BACKGROUND:: Spinal bracing is widely utilized in patients with moderate severity adolescent idiopathic scoliosis with the goal of preventing curve progression and therefore preventing the need for surgical correction. Bracing is typically initiated in patients with a primary curve angle between 25 and 40 degrees, who are Risser sign 0 to 2 and <1-year postmenarchal. The purpose of this study is to determine whether nighttime bracing using a Charleston bending brace is effective in preventing progression of smaller curves (15 to 25 degrees) in skeletally immature, premenarchal female patients relative to current standard of care (observation for curves <25 degrees). METHODS:: Premenarchal, Risser 0 female patients presenting to 2 pediatric orthopaedic specialty practices for evaluation of idiopathic scoliosis with Cobb angle measurements between 15 and 25 degrees were selected. They were randomized by location to receive nighttime bending brace treatment or observation. Patients in the observation group were converted to fulltime TLSO wear if they progressed to >25 degrees primary curve Cobb angle. Curve progression was monitored with minimum 2-year follow-up. RESULTS:: Sixteen patients in the observation group and 21 patients in the bracing group completed 2-year follow-up. All patients in the observation group progressed to fulltime bracing threshold. In the nighttime bracing group, 29% of the patients did not progress to 25 degrees primary curve magnitude. Rate of progression to surgical magnitude was similar in the 2 groups. CONCLUSIONS:: Risser 0 patients presenting with mild idiopathic scoliosis are at high risk for progression to >25 degrees primary curve magnitude. Treatment with the Charleston nighttime bending brace may reduce progression to full-time bracing threshold. No difference in progression to surgical intervention was shown between nighttime bracing and observation for small curves. Copyright © 2014 by Lippincott Williams & Wilkins.


Peck K.,The Indiana Hand to Shoulder Center | Herrera-Soto J.,Arnold Palmer Hospital for Children
Orthopedic Clinics of North America | Year: 2014

Slipped capital femoral epiphysis (SCFE) is a common hip disorder among adolescents, whereby the epiphysis is displaced posteriorly and inferiorly to the metaphysis. Treatment modalities aim to stabilize the epiphysis, prevent further slippage, and avoid complications associated with long-term morbidity, such as osteonecrosis and chondrolysis. Controversy exists with SCFE regarding prophylactic fixation of the contralateral, painless, normal hip, the role of femoroacetabular impingement with SCFE, and whether in situ fixation is the best treatment method for SCFE. This article presents and discusses the latest diagnostic and treatment modalities for SCFE. © 2014 Elsevier Inc.

Loading Arnold Palmer Hospital for Children collaborators
Loading Arnold Palmer Hospital for Children collaborators