Entity

Time filter

Source Type

Durham, NC, United States

Hughes F.M.,Medical University of South Carolina | Hughes F.M.,Argolyn Bioscience Inc. | Shaner B.E.,Medical University of South Carolina | May L.A.,Medical University of South Carolina | And 9 more authors.
Journal of Medicinal Chemistry | Year: 2010

The neurotensin hexapapetide fragment NT(8-13) is a potent analgesic when administered directly to the central nervous system but does not cross the blood-brain barrier. A total of 43 novel derivatives of NT(8-13) were evaluated, with one, ABS212 (1), being most active in four rat models of pain when administered peripherally. Compound 1 binds to human neurotensin receptors 1 and 2 with IC50 of 10.6 and 54.2 nM, respectively, and tolerance to the compound in a rat pain model did not develop after 12 days of daily administration. When it was administered peripherally, serum levels and neurotensin receptor binding potency of 1 peaked within 5 min and returned to baseline within 90-120 min; however, analgesic activity remained near maximum for >240 min. This could be due to its metabolism into an active fragment; however, all 4- and 5-mer hydrolysis products were inactive. This pharmacokinetic/pharmacodynamic dichotomy is discussed. Compound 1 is a candidate for development as a first-in-class analgesic. © 2010 American Chemical Society. Source


Hughes Jr. F.M.,Medical University of South Carolina | Hughes Jr. F.M.,Argolyn Bioscience Inc. | Hughes Jr. F.M.,Halimed Pharmaceuticals, Inc. | Shaner B.E.,Medical University of South Carolina | And 5 more authors.
Open Medicinal Chemistry Journal | Year: 2013

Kappa-opioid agonists are particularly efficacious in the treatment of peripheral pain but suffer from central nervous system (CNS)-mediated effects that limit their development. One promising kappa-agonist is the peptidic compound CR665. Although not orally available, CR665 given i.v. exhibits high peripheral to CNS selectivity and benefits patients with visceral and neuropathic pain. In this study we have generated a series of derivatives of CR665 and screened them for oral activity in the acetic acid-induced rat writhing assay for peripheral pain. Five compounds were further screened for specificity of activation of kappa receptors as well as agonism and antagonism at mu and delta receptors, which can lead to off-target effects. All active derivatives engaged the kappa receptor with EC50s in the low nM range while agonist selectivity for kappa over mu or delta was >11,000-200,000-fold. No antagonist activity was detected. One compound was chosen for further analysis (Compound 9). An oral dose response of 9 in rats yielded an EC50 of 4.7 mg/kg, approaching a druggable level for an oral analgesic. To assess the peripheral selectivity of this compound an i.v. dose response in rats was assessed in the writhing assay and hotplate assay (an assay of CNS-mediated pain). The EC50 in the writhing assay was 0.032 mg/kg while no activity was detectable in the hotplate assay at doses as high as 30 mg/kg, indicating a peripheral selectivity of >900-fold. We propose that compound 9 is a candidate for development as an orally-available peripherally-restricted kappa agonist. © Hughes et al. Source

Discover hidden collaborations