Time filter

Source Type

Herdecke, Germany

Rund S.A.,University of Wurzburg | Rohde H.,University of Hamburg | Sonnenborn U.,Ardeypharm GmbH | Oelschlaeger T.A.,University of Wurzburg
International Journal of Medical Microbiology | Year: 2013

The largest EHEC outbreak up to now in Germany occurred in 2011. It was caused by the non-O157:H7 Shiga-toxinogenic enterohemorrhagic E. coli strain O104:H4. This strain encodes in addition to the Shiga toxin 2 (Stx2), responsible for the hemolytic uremic syndrome (HUS), several adhesins such as aggregative adherence fimbriae. Currently, there is no effective prophylaxis and treatment available for EHEC infections in humans. Especially antibiotics are not indicated for treatment as they may induce Stx production, thus worsening the symptoms. Alternative therapeutics are therefore desperately needed. We tested the probiotic Escherichia coli strain Nissle 1917 (EcN) for antagonistic effects on two O104:H4 EHEC isolates from the 2011 outbreak and on the classical O157:H7 EHEC strain EDL933. These tests included effects on adherence, growth, and Stx production in monoculture and co-culture together with EcN. The inoculum of each co-culture contained EcN and the respective EHEC strain either at a ratio of 1:1 or 10:1 (EcN:EHEC). Adhesion of EHEC strains to Caco-2 cells and to the mucin-producing LS-174T cells was reduced significantly in co-culture with EcN at the 1:1 ratio and very dramatically at the 10:1 ratio. This inhibitory effect of EcN on EHEC adherence was most likely not due to occupation of adhesion sites on the epithelial cells, because in monocultures EcN adhered with much lower bacterial numbers than the EHEC strains. Both EHEC strains of serotype O104:H4 showed reduced growth in the presence of EcN (10:1 ratio). EHEC strain EDL933 grew in co-culture with EcN only during the first 2. h of incubation. Thereafter, EHEC counts declined. At 24. h, the numbers of viable EDL933 was at or slightly below the numbers at the time of inoculation. The amount of Stx2 after 24. h co-incubation with EcN (EcN:EHEC ratio 10:1) was for all 3 EHEC strains tested significantly reduced in comparison to EHEC monocultures.Obviously, EcN shows very efficient antagonistic activity on the EHEC strains of serotype O104:H4 and O157:H7 tested here regarding adherence to human gut epithelial cells, bacterial growth, and Stx2 production in vitro. © 2012 Elsevier GmbH.

Splichalova A.,Academy of Sciences of the Czech Republic | Splichal I.,Academy of Sciences of the Czech Republic | Sonnenborn U.,Ardeypharm GmbH | Rada V.,Czech University of Life Sciences
Journal of Microbiological Methods | Year: 2014

An agar selective enumeration of necrotoxigenic Escherichia coli O55 (NTEC2) and probiotic E. coli Nissle 1917, using modified MacConkey agar, was developed to study bacterial interference between these E. coli strains in a gnotobiotic piglet model. Replacement of lactose with saccharose in the agar enables the direct visual enumeration of red colonies of E. coli O55 and yellow colonies of E. coli Nissle 1917 that are co-cultured in the same Petri dish. A total of 336 colonies (168 for each color) were subjected to strain-specific PCR identification with LNA probes. Sensitivity, specificity, and positive and negative predictive values were 96.43%, 95.83%, 95.86% and 96.41% respectively in E. coli O55, and 98.21%, 97.02%, 97.06% and 98.19% respectively in E. coli Nissle 1917. Color-based enumeration of both E. coli strains in colonic contents and mesenteric lymph nodes homogenates of gnotobiotic piglets demonstrated the applicability of this method for the gnotobiotic piglet model of enteric diseases. © 2014 Elsevier B.V.

Reister M.,GenXPro GmbH | Hoffmeier K.,GenXPro GmbH | Krezdorn N.,GenXPro GmbH | Rotter B.,GenXPro GmbH | And 5 more authors.
Journal of Biotechnology | Year: 2014

Escherichia coli strain Nissle 1917 (EcN) is the active principle of a probiotic preparation (trade name Mutaflor®) used for the treatment of patients with intestinal diseases such as ulcerative colitis and diarrhea. It has GRAS (generally recognized as save) status and has been shown to be a therapeutically effective drug (Sonnenborn and Schulze, 2009). The complete genomic DNA sequence will help in identifying genes and their products which are essential for the strains probiotic nature. Genbank/EMBL/DDBJ accession number: CP007799 (chromosome). © 2014 Elsevier B.V.

Hummel S.,University of Munster | Veltman K.,University of Munster | Cichon C.,University of Munster | Sonnenborn U.,Ardeypharm GmbH | Schmidt M.A.,University of Munster
Applied and Environmental Microbiology | Year: 2012

The intestinal ecosystem is balanced by dynamic interactions between resident and incoming microbes, the gastrointestinal barrier, and the mucosal immune system. However, in the context of inflammatory bowel diseases (IBD), where the integrity of the gastrointestinal barrier is compromised, resident microbes contribute to the development and perpetuation of inflammation and disease. Probiotic bacteria have been shown to exert beneficial effects, e.g., enhancing epithelial barrier integrity. However, the mechanisms underlying these beneficial effects are only poorly understood. Here, we comparatively investigated the effects of four probiotic lactobacilli, namely, Lactobacillus acidophilus, L. fermentum, L. gasseri, and L. rhamnosus, in a T84 cell epithelial barrier model. Results of DNA microarray experiments indicating that lactobacilli modulate the regulation of genes encoding in particular adherence junction proteins such as E-cadherin and β-catenin were confirmed by quantitative reverse transcription-PCR (qRT-PCR). Furthermore, we show that epithelial barrier function is modulated by Gram-positive probiotic lactobacilli via their effect on adherence junction protein expression and complex formation. In addition, incubation with lactobacilli differentially influences the phosphorylation of adherence junction proteins and the abundance of protein kinase C (PKC) isoforms such as PKCδ that thereby positively modulates epithelial barrier function. Further insight into the underlying molecular mechanisms triggered by these probiotics might also foster the development of novel strategies for the treatment of gastrointestinal diseases (e.g., IBD). © 2012, American Society for Microbiology.

Splichalova A.,Academy of Sciences of the Czech Republic | Trebichavsky I.,Academy of Sciences of the Czech Republic | Rada V.,Czech University of Life Sciences | Vlkova E.,Czech University of Life Sciences | And 2 more authors.
Clinical and Experimental Immunology | Year: 2011

The colonization, translocation and protective effect of two intestinal bacteria - PR4 (pig commensal strain of Bifidobacterium choerinum) or EcN (probiotic Escherichia coli strain Nissle 1917) - against subsequent infection with a virulent LT2 strain of Salmonella enterica serovar Typhimurium were studied in gnotobiotic pigs after oral association. The clinical state of experimental animals correlated with bacterial translocation and levels of inflammatory cytokines [a chemokine, interleukin (IL)-8, a proinflammatory cytokine, tumour necrosis factor (TNF)-α and an anti-inflammatory cytokine, IL-10] in plasma and intestinal lavages. Gnotobiotic pigs orally mono-associated with either PR4 or EcN thrived, and bacteria were not found in their blood. No significant inflammatory cytokine response was observed. Mono-association with Salmonella caused devastating septicaemia characterized by high levels of IL-10 and TNF-α in plasma and TNF-α in the intestine. Di-associated gnotobiotic pigs were given PR4 or EcN for 24 h. Subsequently, they were infected orally with Salmonella and euthanized 24 h later. Pigs associated with bifidobacteria before Salmonella infection suffered from severe systemic infection and mounted similar cytokine responses as pigs infected with Salmonella alone. In contrast, EcN interfered with translocation of Salmonella into mesenteric lymph nodes and systemic circulation. Pigs pre-associated with EcN thrived and their clinical condition correlated with the absence of IL-10 in their plasma and a decrease of TNF-α in plasma and ileum. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

Discover hidden collaborations