Molndal, Sweden
Molndal, Sweden

For the British high end hi-fi manufacturer please see A&R Cambridge Ltd Arcam, or Arcam AB, manufactures Electron Beam Melting systems for use in additive manufacturing, which create solid parts from metal powders. In addition to hardware production, Arcam also produces metal powder through AP&C and medical implants through DiSanto Technologies. Arcam AB is a publicly traded company listed on the Stockholm Stock Exchange under ARCM but is also commonly quoted as OTC stock under AMAVF. Arcam AB corporate headquarters are in Sweden. EBM has applications in the medical, aerospace, and automotive industries. Wikipedia.


Time filter

Source Type

Patent
Arcam | Date: 2016-08-09

A method for non-destructive evaluation of a manufacturing process when forming a three-dimensional article through successive fusion of parts of a metal powder bed, which parts corresponds to successive cross sections of the three-dimensional article, the method comprising the steps of collecting an X-ray signal, created by the electron beam, from at least one position of the first and/or second metal powder layer and/or a melt pool of the first and/or second metal powder layer and/or a fused first and/or second powder layer by an X-ray detector, comparing the X-ray signal with a reference signal, alarming if the generated X-ray signal compared to the reference signal is indicating contamination material of larger amount than a predetermined value and/or a deviation in Atomic % of the powder material larger than a predetermined value.


Patent
Arcam | Date: 2016-12-07

Various embodiments provide a method and apparatus for forming a three-dimensional article through successive fusion of parts of at least one layer of a powder bed provided on a work table in an additive manufacturing machine, which parts corresponds to successive cross sections of the three-dimensional article. The method comprises the steps of: applying a layer of predetermined thickness of powder particles on the work table, applying a coating on at least a portion of the powder particles, which coating is at least partially covering the powder particles, and fusing the powder particles on the work table with an electron beam.


Patent
Arcam | Date: 2016-12-07

Various embodiments provide a method and apparatus for forming a three-dimensional article through successive fusion of parts of at least one layer of a powder bed provided on a work table in an additive manufacturing machine, which parts corresponds to successive cross sections of the three-dimensional article. The method comprises the steps of: applying a layer of predetermined thickness of powder particles on the work table, applying a coating on at least a portion of the powder particles, which coating is at least partially covering the powder particles, and fusing the powder particles on the work table with an electron beam.


Patent
Arcam | Date: 2016-08-24

An X-ray standard reference object for calibrating a scanning electron beam in an additive manufacturing apparatus by measuring X-ray signals generated by scanning the electron beam onto the reference object, the reference object comprises: a lower and an upper plate being essentially in parallel and attached spaced apart from each other, the upper plate comprises a plurality of holes, wherein a predetermined hollow pattern is provided inside the holes.


Patent
Arcam | Date: 2016-03-22

A method for verifying a size of an energy beam spot, said method comprising the steps of providing a first beam spot having a predetermined size and power at a first position on a work piece, varying a focus and/or astigmatism lens setting for said first beam spot until max intensity for the beam spot is detected, comparing the detected settings of said focus lens and/or astigmatism lens for said maximum intensity of the beam spot with stored settings of said focus lens and/or astigmatism lens for the beam spot with said predetermined size and power, repeating step a-c for different predetermined beam powers, repeating step a-d for different positions on said work piece, wherein said beam spot size is verified if each detected settings of said focus lens and/or astigmatism lens are deviating less than a predetermined value from corresponding stored settings of said focus lens and/or astigmatism lens.


A method is provided for forming a three-dimensional article through successive fusion of parts of a powder bed. The method includes the steps of: applying a first powder layer on a work table; directing an electron beam from an electron beam source over the work table, the directing of the electron beam causing the first powder layer to fuse in first selected locations according to a pre-determined model, so as to form a first part of a cross section of the three dimensional article, and intensity modulating X-rays from the powder layer or from a clean work table with a patterned aperture modulator and a patterned aperture resolver, wherein a verification of at least one of a size, position, scan speed, or shape of the electron beam is achieved by comparing detected intensity modulated X-ray signals with saved reference values.


The invention concerns a method for producing three-dimensional objects (6) layer by layer using a powdery material (7) which can be solidified by irradiating it with a high-energy beam (4), said method comprising the steps of: applying a first layer of powdery material onto a working area (5); solidifying a part of said first layer by irradiating it with a high-energy beam; and applying a second layer (8) of powdery material onto the first, partly solidified layer. The invention is characterized in that the method comprises the step of: determining a rate at which the temperature of the second layer (8) increases after application onto the first layer. The invention also concerns an apparatus configured to operate according to the above method.


Patent
Arcam | Date: 2016-02-10

A method is provided for production of at least one three-dimensional article by successively providing powder layers and fusing together of selected areas of the layers, which areas correspond to partial cross sections of the three-dimensional body. The method involves: applying a first powder layer on a work table, fusing the first powder layer in the selected areas, the selected areas being a full contour of the three dimensional article and a first portion of an inner area of the three-dimensional article, and fusing a second portion of the inner area of the three-dimensional article in the first powder layer completely when the first powder layer is covered with at least one second layer, the second portion being distinct relative to the first portion.


Patent
Arcam | Date: 2016-02-10

A method is provided for forming at least one three-dimensional article through successive fusion of parts of a powder bed. The method involves: providing a model of the at least one three dimensional article, dividing at least two cross sections in said model into a first inner area portion, a second inner area portion and a contour portion, applying a first material layer on a work table, directing at least one energy beam over the work table causing the first material layer to join in selected locations according to the model for forming a partial first cross section of the three dimensional article, applying a second material layer on said work table; and directing at least one energy beam over the work table causing the second material layer to join in selected locations and form a partial second cross section of said three dimensional article.


Grant
Agency: European Commission | Branch: H2020 | Program: SME-2 | Phase: NMP-25-2014 | Award Amount: 2.39M | Year: 2015

Background: Production of high integrity components in Europe must use smart manufacturing methods to be efficient in use of scarce materials and other resources, and must ensure its environmental impact is minimised. Advanced manufacturing techniques, such as metal powder bed 3D printing, can ensure that production of aerospace parts is carried out with resource efficiency. However, such techniques are today struggling with technical and reliability consistency for use in production. Arcam is a Swedish SME who uniquely design and supply electron beam additive manufacturing (EBM) machines. Objective: The aim of this work is to overcome key obstacles concerning future requirements for EBM 3D printing for production of aerospace parts through the integration of two enabling technologies. The work will develop and integrate a novel plasma cathode electron source with an EBM machine focusing on realising the enhanced capabilities of low maintenance, consistent manufacturing performance and higher productivity. Also, development and integration of an array probe device will provide quantified quality assurance of machine manufacturing readiness. The key research challenges will be the design of the electron source and optics and the development of new build procedures making best use of the new source. Expected Results The verified design of a plasma cathode electron source will enable high integrity 3D printing of metal parts. Arcam will supply equipment with this technology to large industrial companies for efficient production of parts. The equipment will enable the wider adoption of EBM leading to efficient use of materials particularly strategic titanium alloys and nickel based super alloys at first. Increased equipment sales are expected to boost Arcams growth over the next 5-10 years leading to faster adoption of 3D printing for large scale production. The results will be disseminated to existing and potential end-user clients in aerospace and other sectors.

Loading Arcam collaborators
Loading Arcam collaborators