Molndal, Sweden
Molndal, Sweden

For the British high end hi-fi manufacturer please see A&R Cambridge Ltd Arcam, or Arcam AB, manufactures Electron Beam Melting systems for use in additive manufacturing, which create solid parts from metal powders. In addition to hardware production, Arcam also produces metal powder through AP&C and medical implants through DiSanto Technologies. Arcam AB is a publicly traded company listed on the Stockholm Stock Exchange under ARCM but is also commonly quoted as OTC stock under AMAVF. Arcam AB corporate headquarters are in Sweden. EBM has applications in the medical, aerospace, and automotive industries. Wikipedia.


Time filter

Source Type

Patent
Arcam | Date: 2016-08-09

A method for non-destructive evaluation of a manufacturing process when forming a three-dimensional article through successive fusion of parts of a metal powder bed, which parts corresponds to successive cross sections of the three-dimensional article, the method comprising the steps of collecting an X-ray signal, created by the electron beam, from at least one position of the first and/or second metal powder layer and/or a melt pool of the first and/or second metal powder layer and/or a fused first and/or second powder layer by an X-ray detector, comparing the X-ray signal with a reference signal, alarming if the generated X-ray signal compared to the reference signal is indicating contamination material of larger amount than a predetermined value and/or a deviation in Atomic % of the powder material larger than a predetermined value.


Patent
Arcam | Date: 2016-12-07

Various embodiments provide a method and apparatus for forming a three-dimensional article through successive fusion of parts of at least one layer of a powder bed provided on a work table in an additive manufacturing machine, which parts corresponds to successive cross sections of the three-dimensional article. The method comprises the steps of: applying a layer of predetermined thickness of powder particles on the work table, applying a coating on at least a portion of the powder particles, which coating is at least partially covering the powder particles, and fusing the powder particles on the work table with an electron beam.


Apparatus for producing a three-dimensional object layer by layer using a powdery material which can be solidified by irradiating it with an energy beam, said apparatus comprising: a working area onto which layers of powdery material are to be placed; a powder storage unit, where said base surface is supporting a supply of powder in said powder storage unit; a powder distribution member, a pivoted powder pushing device for bringing a portion of powder from said base surface to a position between said distribution member and said working area, said distribution member further being arranged to be moveable towards and across the working area so as to distribute the portion of powder onto the working area, wherein a first portion of said pivoted powder pushing device is movable under said distribution member. An associated method and computer program product are also provided.


A pivoted powder pushing device is provided, comprising a first portion and a contact member, wherein: the contact member is configured to operatively engage a grip arm of the distribution member when the distribution member is positioned at least in part above the base surface, and the first portion is moved via the engagement of the grip arm and the contact member in a first direction opposite a direction of travel of the distribution member, such that the first portion of said pivoted powder pushing devicepasses under said distribution member. An associated apparatus, method, and computer program product are also provided.


The present invention relates to a method for prolonging lifetime of a triod electron beam source when forming a three-dimensional article through successively depositing individual layers of powder material that are fused together so as to form the article, the method comprising the steps of: adjusting a cathode heating power at a predetermined value above a threshold heating value, which threshold heating value creates a predetermined X-ray signal emanating from the triod electron beam source, fusing the three-dimensional article with the electron beam source having the cathode heating power at a predetermined value above a threshold heating value.


The present invention relates to a methods, computer program products, program elements, and apparatuses for forming a three-dimensional article through successively depositing individual layers of powder material that are fused together so as to form the article. The method comprising the steps of providing at least one electron beam source emitting an electron beam for at least one of heating or fusing the powder material, where the electron beam source comprises a cathode and an anode, and varying an accelerator voltage between the cathode and the anode between at least a first and second predetermined value during the forming of the three-dimensional article.


Provided is a method for forming a three dimensional article comprising the steps of: providing at least one electron beam source emitting an electron beam for at least one of heating or fusing said powder material, where said electron beam source comprises a cathode, an anode, and a grid between said cathode and anode; controlling the electron beam source in at least two modes during said formation of said three dimensional article; applying a predetermined accelerator voltage between said cathode and said anode; applying a predetermined number of different grid voltages between said grid and said cathode for producing a corresponding predetermined number of electron beam currents; and at least one of creating or updating a look-up table or mathematical function during one of the at least two modes, wherein said look-up table or mathematical function defines a relationship between a desired electron beam current and an applied grid voltage.


Patent
Arcam | Date: 2017-02-08

Various embodiments of the present invention relate to a method for welding a workpiece (660) comprising the steps of: making a first weld at a first position on said workpiece with a high energy beam (605), deflecting the high energy beam with at least one deflection lens (640) for making a second weld at a second position on said workpiece, focusing the high energy beam on said workpiece with at least one focusing lens (630), shaping the high energy beam on said workpiece with at least one astigmatism lens (620) so that the shape of the high energy beam on said workpiece is longer in a direction parallel to a deflection direction of said high energy beam than in a direction perpendicular to said deflection direction of said high energy beam. The invention is also related to the use of an astigmatism lens and to a method for forming a three dimensional article.


A method for forming at least one three-dimensional article through successive fusion of parts of a powder bed, which parts correspond to successive cross sections of the three-dimensional article, the method comprising the steps of: providing a model of the at least one three- dimensional article; applying a first powder layer on a work table; directing a first energy beam from a first energy beam source over the work table causing the first powder layer to fuse in first selected locations according to corresponding models to form a first cross section of the three-dimensional article, where the first energy beam is fusing at least a first region of a first cross section with parallel scan lines in a first direction; varying a distance between two adjacent scan lines, which are used for fusing the powder layer, as a function of a mean length of the two adjacent scan lines.


Grant
Agency: European Commission | Branch: H2020 | Program: SME-2 | Phase: NMP-25-2014 | Award Amount: 2.39M | Year: 2015

Background: Production of high integrity components in Europe must use smart manufacturing methods to be efficient in use of scarce materials and other resources, and must ensure its environmental impact is minimised. Advanced manufacturing techniques, such as metal powder bed 3D printing, can ensure that production of aerospace parts is carried out with resource efficiency. However, such techniques are today struggling with technical and reliability consistency for use in production. Arcam is a Swedish SME who uniquely design and supply electron beam additive manufacturing (EBM) machines. Objective: The aim of this work is to overcome key obstacles concerning future requirements for EBM 3D printing for production of aerospace parts through the integration of two enabling technologies. The work will develop and integrate a novel plasma cathode electron source with an EBM machine focusing on realising the enhanced capabilities of low maintenance, consistent manufacturing performance and higher productivity. Also, development and integration of an array probe device will provide quantified quality assurance of machine manufacturing readiness. The key research challenges will be the design of the electron source and optics and the development of new build procedures making best use of the new source. Expected Results The verified design of a plasma cathode electron source will enable high integrity 3D printing of metal parts. Arcam will supply equipment with this technology to large industrial companies for efficient production of parts. The equipment will enable the wider adoption of EBM leading to efficient use of materials particularly strategic titanium alloys and nickel based super alloys at first. Increased equipment sales are expected to boost Arcams growth over the next 5-10 years leading to faster adoption of 3D printing for large scale production. The results will be disseminated to existing and potential end-user clients in aerospace and other sectors.

Loading Arcam collaborators
Loading Arcam collaborators