Aquatic Solutions International

Dundas, Australia

Aquatic Solutions International

Dundas, Australia
Time filter
Source Type

Freshwater mussels (Bivalvia: Unionida) are among the most threatened freshwater faunal groups worldwide. Metal contamination is one threat that has been linked to declining mussel population distribution and abundance. This study determined the sensitivity (valve closure) of the glochidia (larvae) of six species of Australian freshwater mussels to cadmium (Cd), cobalt (Co), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn), key metal contaminants impacting urbanized coastal rivers in south-eastern Australia (home to ~ 50% of the population), in a soft reconstituted freshwater (hardness 42 mg CaCO3 L− 1; alkalinity 22 mg CaCO3 L− 1 and pH 7.0) over 72 h. The sensitivity of each mussel species to each metal increased 2.5-fold with increasing exposure time from 24 to 72 h. The most sensitive mussel species (Cucumerunio novaehollandiae), across all metals and exposure times, was ~ 60% more sensitive than the least sensitive species (Velesunio ambiguus). The relative sensitivity of glochidia to the six selected metals, across all mussel species and exposure times, was: Cu > Cd > Pb > Co = Ni > Zn. Glochidia were most sensitive to Cu and least sensitive to Zn. Quantitatively, the toxicity of Cu was 3-fold more than Cd, 8-fold more than Pb, 14-fold more than Co or Ni and 16-fold more than Zn. The cell surface binding affinities (conditional log K values) of Cd (range 6.65–6.94), Co (6.04–6.29), Cu (7.17–7.46), Ni (6.02–6.29), Pb (6.24–6.53) or Zn (5.96–6.23), pooled for all mussel species after 72 h exposure, were positively related to metal sensitivity. The chronic no effect concentrations (NECs) of Cu, Ni and Zn were below (i.e. glochidia were more sensitive than) their national freshwater guideline values, indicating that freshwater mussels may not be adequately protected for these metals in urbanized coastal rivers within south-eastern Australia. © 2017 Elsevier B.V.

Jeffree R.A.,IAEA Environment Laboratories | Markich S.J.,Aquatic Solutions International | Oberhaensli F.,IAEA Environment Laboratories | Teyssie J.-L.,IAEA Environment Laboratories
Journal of Environmental Radioactivity | Year: 2017

The biokinetics of eight radionuclides (241Am, 109Cd, 134Cs, 75Se, 54Mn, 110mAg, 65Zn, 60Co) absorbed from the aquatic medium by juvenile Russian sturgeon (Acipenser gueldenstaedtii) were experimentally determined in fresh (0.42‰) and brackish (9.0‰) waters, of a similar salinity range to the Caspian Sea, and in conjunction with chemical speciation modelling. Uptake and loss rate constants were determined for each radionuclide for a 14 day exposure at each salinity and during 28 days of exposure to radionuclide-free conditions. Whole body (wet): water concentration factors (CF) achieved over 14 days for these eight radionuclides were used in a comparison with the same radionuclide CFs previously determined experimentally for six species of marine teleosts and chondrichthyans, to further test a phylogeny-based model of multi-nuclide bioaccumulation based on marine chordates. Multivariate analyses (multidimensional scaling and hierarchical clustering) identified the relative affinities among these taxa and also those radionuclides which distinguished most between them, in their differing CFs. They consistently showed that sturgeon aggregated as a group, which was also slightly differentiated with salinity. Sturgeon were distinguished from all teleosts and chondrichthyans but were more dissimilar from chondrichthyans than teleosts, in accordance with sturgeon's different periods of divergence from them in evolutionary time. Variable salinity among experiments may also cause changes in radionuclide bioaccumulation due to variations in (i) bioavailability (ii) osmolarity, and (iii) competitive inhibition of a radionuclide's bioaccumulation by its stable analogue or metabolic model. Their potentially confounding effects on these patterns of radionuclide CFs among taxa were critically evaluated for those radionuclides which discriminated most between sturgeon and teleosts or chondrichthyans. Bioavailability, osmolarity and competitive inhibition effects were identified among salinity treatments, however they were not appreciable enough to override the phylogeny-based signal. The results of this study are thus consistent with a phylogeny-based model of radionuclide bioaccumulation by marine chordates being valid for a fish species living in lower salinity regimes. © 2017 Elsevier Ltd

Trenfield M.A.,Environmental Research Institute of the Supervising Scientist | Trenfield M.A.,University of Queensland | McDonald S.,Curtin University Australia | Kovacs K.,University of Szeged | And 7 more authors.
Environmental Science and Technology | Year: 2011

Fulvic acid (FA) from a tropical Australian billabong (lagoon) was isolated with XAD-8 resin and characterized using size exclusion chromatography, solid state cross-polarization magic angle spinning, 13C nuclear magnetic resonance spectroscopy, elemental analysis, and potentiometric acid-base titration. Physicochemical characteristics of the billabong FA were comparable with those of the Suwannee River Fulvic Acid (SRFA) standard. The greater negative charge density of the billabong FA suggested it contained protons that were more weakly bound than those of SRFA, with the potential for billabong water to complex less metal contaminants, such as uranium (U). This may subsequently influence the toxicity of metal contaminants to resident freshwater organisms. The complexation of U with dissolved organic carbon (DOC) (10 mg L-1) in billabong water was calculated using the HARPHRQ geochemical speciation model and also measured using flow field-flow fractionation combined with inductively coupled plasma mass-spectroscopy. Agreement between both methods was very good (within 4% as U-DOC). The results suggest that in billabong water at pH 6.0, containing an average DOC of 10 mg L-1 and a U concentration of 90 μg L-1, around 10% of U is complexed with DOC. © 2011 American Chemical Society.

Jeffree R.A.,University of Technology, Sydney | Markich S.J.,Aquatic Solutions International | Twining J.R.,Austral Radioecology
PLoS ONE | Year: 2014

Bony bream (Nematalosa erebi) and black catfish (Neosilurus ater) were sampled from the fresh surface waters of the Finniss River in tropical northern Australia, along a metal pollution gradient draining the Rum Jungle copper/uranium mine, a contaminant source for over five decades. Paradoxically, populations of both fish species exposed to the highest concentrations of mine-related metals (cobalt, copper, lead, manganese, nickel, uranium and zinc) in surface water and sediment had the lowest tissue (bone, liver and muscle) concentrations of these metals. The degree of reduction in tissue concentrations of exposed populations was also specific to each metal and inversely related to its degree of environmental increase above background. Several explanations for diminished metal bioaccumulation in fishes from the contaminated region were evaluated. Geochemical speciation modeling of metal bioavailability in surface water showed no differences between the contaminated region and the control sites. Also, the macro-nutrient (calcium, magnesium and sodium) water concentrations, that may competitively inhibit metal uptake, were not elevated with trace metal contamination. Reduced exposure to contaminants due to avoidance behavior was unlikely due to the absence of refugial water bodies with the requisite metal concentrations lower than the control sites and very reduced connectivity at time of sampling. The most plausible interpretation of these results is that populations of both fish species have modified kinetics within their metal bioaccumulation physiology, via adaptation or tolerance responses, to reduce their body burdens of metals. This hypothesis is consistent with (i) reduced tissue concentrations of calcium, magnesium and sodium (macro-nutrients), in exposed populations of both species, (ii) experimental findings for other fish species from the Finniss River and other contaminated regions, and (iii) the number of generations exposed to likely selection pressure over 50 years. © 2014 Jeffree et al.

Markich S.J.,Aquatic Solutions International | Twining J.R.,Austral Radioecology
Radioactivity in the Environment | Year: 2012

Radionuclides in (sub-) tropical freshwater systems generally behave in a predictable manner, based on what is known from lakes and streams in the better studied temperate climes. Within the water column, the fate and behaviour of radionuclides and their stable element analogs are typically governed by key physicochemical variables such as pH, redox potential, the concentrations of dissolved ions and the presence and type of organic matter. The chemical form (or speciation) of a radionuclide or stable element is generally of greater biological importance (i.e. bioavailability) than the total concentration. This concept is currently being integrated into mechanistic frameworks (e.g. biotic ligand and bioaccumulation models) by national regulators for protecting freshwater ecosystems. Given that the volume of fresh surface waters (i.e. rivers and lakes) is relatively small (0.01%) in comparison to seas and oceans, then the biota living within them can also substantially influence the chemistry of a radionuclide, by effectively acting as " large particles" available for surface complexation. For example, wetlands serve as effective biofilters to remove radionuclides from the water column. Once radionuclides have been accumulated by organisms, their behaviours generally reflect their similarities to essential (macro and micro nutrients) and non-essential elements. Metabolic mechanisms tending toward homeostasis typically make internal organism chemistry less dynamic than that in the external water column. Again, this is to be expected and radionuclide biokinetics generally follow the patterns observed for freshwater organisms in temperate climates. This constancy has enabled models to be developed to describe the rate and extent of radionuclide bioaccumulation. These models can be adapted to include various uptake pathways (from water, food or sediment) via gills, skin or gut and modes of excretion or dilution (e.g. diffusion, egestion, moulting and growth) and different parameters can be estimated for each radionuclide and organism. Key biotic factors known to influence radionuclide bioaccumulation are size, age and gender. There are also differences within and between species that reflect the natural variability within any system. Despite the similarities that exist between tropical and temperate freshwater systems, it should be noted that there is still a paucity of data for (sub-) tropical freshwater organisms and systems, and hence there is the chance for exceptions to the consistency to exist. Data are presented that show that the uptake of Sr and Cs by tropical freshwater fishes is much lower than would be expected based on the studies of freshwater temperate fishes. These observations point to the need to undertake additional site- and species- specific investigations on the radioecology of key radionuclides, whenever future nuclear developments in tropical systems are initiated. © 2012 Elsevier Ltd.

Trenfield M.A.,Environmental Research Institute of the Supervising Scientist | Trenfield M.A.,University of Queensland | Ng J.C.,University of Queensland | Noller B.N.,University of Queensland | And 2 more authors.
Environmental Science and Technology | Year: 2011

The influence of dissolved organic carbon (DOC) on the toxicity of uranium (U) to three Australian tropical freshwater species, the Northern Trout Gudgeon (Mogurnda mogurnda), green hydra (Hydra viridissima) and unicellular green alga (Chlorella sp.) was assessed. Exposures were conducted in synthetic soft water without DOC and with DOC added in the form of standard Suwannee River Fulvic Acid (SRFA). Organisms were exposed to a range of U concentrations at a range of DOC concentrations (0-20 mg L-1). U toxicity was up to 20 times less in water containing 20 mg L-1 DOC, relative to DOC-free test waters. U toxicity was also assessed using natural water from a tropical Australian billabong containing 10 mg L-1 DOC. U toxicity was up to ten times less in the billabong water, relative to DOC - free test waters. SRFA was twice as effective at reducing U toxicity as the billabong water at equivalent DOC concentrations. Geochemical speciation modeling confirmed the decreased U toxicity that resulted from both DOC sources was primarily due to a decrease in the free uranyl ion (UO2 2+) through complexation with DOC. A predictive model is presented for each of the organisms that can be used to predict U toxicity at a given U and DOC concentration. © 2011 American Chemical Society.

Trenfield M.A.,Environmental Research Institute of the Supervising Scientist | Trenfield M.A.,University of Queensland | Ng J.C.,University of Queensland | Noller B.,University of Queensland | And 2 more authors.
Ecotoxicology | Year: 2012

The influence of dissolved organic carbon (DOC), in the form of Suwannee River fulvic acid (SRFA), on uranium (U) toxicity to the unicellular eukaryote, Euglena gracilis (Z strain), was investigated at pH 6. In a background medium without SRFA, exposure of E. gracilis to 57 μg L -1 U resulted in a 50% reduction in growth (IC50). The addition of 20 mg L -1 DOC (as SRFA), reduced U toxicity 4 to 5-fold (IC 50 increased to 254 μg L -1 U). This reduction in toxicity was also evident at more sensitive effect levels with a 10% reduction in growth (IC 10) occurring at 5 μg L -1 U in the background medium and at 17 μg L -1 U in the SRFA medium, respectively. This amelioration of toxicity with the addition of SRFA was linked to a decrease in the bioavailability of U, with geochemical speciation modelling predicting 84% of U would be complexed by SRFA. The decrease in bioavailability of U in the presence of SRFA was also evident from the 11-14 fold reduction in the cellular concentration of U compared to that of E. gracilis in the background medium. Stepwise multiple linear regression analyses indicated that UO 2 2+ alone explained 51% of the variation in measured U toxicity to E. gracilis. Preliminary U exposures to E. gracilis in the presence of a reactive oxygen species probe, suggest exposure to ≥60 μg L -1 U may induce oxidative stress, but this endpoint was not considered to be a sensitive biological indicator. © Springer Science+Business Media, LLC 2012.

Trenfield M.A.,Environmental Research Institute of the Supervising Scientist | Trenfield M.A.,University of Queensland | Markich S.J.,Aquatic Solutions International | Ng J.C.,University of Queensland | And 2 more authors.
Environmental Toxicology and Chemistry | Year: 2012

The influence of dissolved organic carbon (DOC) on the toxicity of aluminum (Al) at pH 5 (relevant to acid mine drainage conditions), to the tropical green hydra (Hydra viridissima), green alga (Chlorella sp.), and cladoceran (Moinodaphnia macleayi) was assessed. Two DOC sources, a natural in situ DOC in soft billabong water (SBW) and Suwannee River fulvic acid (SRFA) standard, were compared. The order of sensitivity of the test organisms to dissolved Al (0.1μm fraction) was Hydra viridissima>Moinodaphnia macleayi>Chlorella sp. with DOC reducing dissolved Al toxicity most for Hydra viridissima. However, colloidal or precipitated Al may contribute indirectly to the toxicity for M. macleayi and Chlorella sp. The toxicity of dissolved Al was up to six times lower in test waters containing 10mgL -1 DOC (in the form of SRFA), relative to toxicity observed at 1mgL -1 DOC. In contrast, the toxicity of Al was up to two times lower in SBW containing 10mgL -1 DOC, relative to water containing 1mgL -1 DOC. The increased ability of SRFA in reducing Al toxicity was linked to its greater affinity for complexing Al compared with the in situ DOC. This has important implications for studies that use commercial standards of humic substances to predict Al toxicity in local environments. Speciation modeling demonstrated that Al 3+ and AlOH 2+ provided a strong relationship with toxicity. An empirical relationship is provided for each organism that can be used to predict Al toxicity at a given Al and DOC concentration. © 2011 SETAC.

Markich S.J.,Aquatic Solutions International
Science of the Total Environment | Year: 2013

There is a lack of good quality data and mechanistic understanding on the effects of true water hardness (calcium (Ca) and magnesium (Mg)) on the bioavailability and toxicity of uranium (U) to freshwater biota. This study determined the effect of true water hardness (20, 75, 150, 275 and 400mgCaCO3L-1) on the cell surface binding affinity (log K), accumulation and toxicity (growth inhibition) of U in a submerged, rootless, macrophyte (Ceratophyllum demersum) in a synthetic freshwater with constant alkalinity (13mgCaCO3L-1) and pH (6.2) over 7days. A 20-fold increase in water hardness resulted in a 4-fold decrease in U toxicity (median effect concentration (EC50)=134μgL-1U at 20mgCaCO3L-1 hardness, increasing to 547μgL-1 U at 400mgCaCO3L-1 hardness), cell surface binding affinity (log K=6.25 at 20mg CaCO3L-1 hardness, decreasing to log K=5.64 at 400mgCaCO3L-1 hardness) and accumulation (the concentration factor decreased from 63 at 20mgCaCO3L-1 hardness to 15 at 400mgCaCO3L-1 hardness) of U. Calcium provided a 4-fold greater protective effect against U accumulation and toxicity compared to Mg. Speciation calculations indicated negligible differences in the percentages of key U species (UO2 2+, UO2OH+, UO2(OH)2) over the range of water hardness tested. The inhibition of U binding at the cell surface, and subsequent uptake, by C. demersum, with increasing Ca and/or Mg concentration, may be explained in terms of (i) competition between Ca2+/Mg2+ and UO2 2+ (and/or UO2OH+) for physiologically active sites at the cell surface, and/or (ii) reduced negative charge (electrical potential) at the cell surface, resulting in a decrease in the activity of UO2 2+ (and/or UO2OH+) at the plant/water interface (boundary layer), and consequently, less U bound to physiologically active cell surface sites. In the absence of a biotic ligand model for U, the results of this study (together with previous work) reinforce the need for a more flexible, hardness-dependent, U guideline for the protection of selected freshwater biota. © 2012 Elsevier B.V.

Markich S.J.,Aquatic Solutions International | Stauber J.L.,CSIRO
Environmental Toxicology and Chemistry | Year: 2012

The present study reanalyzed 46 existing uranium (U) chronic toxicity datasets for four freshwater species to generate consistent toxicity measures and explore relationships between U toxicity and key physicochemical variables. Dissolved organic carbon (DOC) was consistently the best predictor of U toxicity based on 10% inhibitory concentration (IC10) and median inhibitory concentration (IC50) values, with water hardness also being a significant co-predictor of IC50 concentrations for one species. The influence of DOC on acute and chronic U toxicity was further characterized using existing data for five species, and was found to vary depending on species, DOC source, and exposure duration (acute vs chronic). The slopes of the relationships between DOC and (normalized) acute and chronic U toxicity were modeled using cumulative probability distributions. From these, slopes were selected for which to correct acute or chronic U toxicity values or hazard estimates based on the aquatic DOC concentration. The fifth percentiles of these cumulative probability distributions for acute and chronic exposure data were 0.064 and 0.090, respectively, corresponding to a 6.4 and 9.0% reduction in U toxicity relative to the toxicity at the base DOC concentration for each 1mg/L increase in DOC concentration (over the DOC range 0-30mg/L). Algorithms were developed to enable the adjustment of U toxicity values and U hazard estimates, depending on DOC concentrations. These algorithms will significantly enhance the environmental relevance of water quality/risk assessments for U in fresh surface waters. © 2012 SETAC.

Loading Aquatic Solutions International collaborators
Loading Aquatic Solutions International collaborators