Time filter

Source Type

PRAHA, Czech Republic

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: ENV.2008. | Award Amount: 2.80M | Year: 2009

The Nametech project harnesses benefits of nanotechnology to bring about improvements in membrane filtration for advanced water treatment. The general objective is to strengthen the European membrane market by making nanotechnology available to large scale European membrane manufacturers. A unique feature of the project is the knowledge transfer between the experienced membrane manufacturer Norit and the coating expert and new-comer to the membrane field Agfa Gevaert. The S&T focus is on the use of nano-structured materials to alter the physical and chemical properties of polymeric ultrafiltration membranes and thereby improving the filtration performance at macroscale installations. The project aims at adapting commercial nanoparticles such as TiO2 and Ag for the modification of UF membranes to reduce fouling, and thus improve its permeability (i.e. Technology Path 1). In Technology Path 2 and 3, the potential of using active nanoparticles, such as bionano-catalysts, in combination with membranes is examined to remove micropollutants such as chlorinated compounds, nitroaromatic compounds or redox active metals, thus improving the water quality. A specific novelty is the development of an integrated permeate channel concept, whereby the nanoparticles are embedded in 3D textiles, functioning as membrane support and permeate channel. The nanoparticles will be deposited on the membrane surface or embedded in the membrane (mixed matrix). The S&T challenges regarding the modification of the nanoparticles, the deposition of the nanoparticles on membrane surface as well as the production of nano-activated membranes (NAMs) will be addressed in WP 1, 2 and 3. The newly developed NAMs will be tested at laboratory scale (WP 4) before selecting the most promising concept for testing at pilot scale (WP 5). The activities will be complemented by a toxicological study and the application of LCA to assess the environmental impacts (WP 6). The high industrial involvement puts a strong focus on the exploitation strategies and handling IPR issues (WP 7).

Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: ENV.2007. | Award Amount: 14.58M | Year: 2008

Sustainable water use in industry is the goal of AquaFit4Use, by a cross-sectorial, integrated approach. The overall objectives are: the development and implementation of new, reliable, cost-effective technologies, tools and methods for sustainable water supply, use and discharge in the main water consuming industries in order to significantly reduce water use, mitigate environmental impact and produce and apply water qualities in accordance with industrial own specifications (fit - for - use) from all possible sources, and contributing to a far-going closure of the water cycle in a economical, sustainable and safe way while improving their product quality and process stability. The 4 pillars of the project are Industrial Water Fit-for-use, Integrated water resource management, Strong industrial participation and Cross-sectorial technologies and approach. Water fit-for-use is the basis for sustainable water use; the integrated approach a must. Tools will be developed to define and control water quality. The heart of AquaFit4Use however is the development of new cross-sectorial technologies, with a focus at biofouling and scaling prevention, the treatment of saline streams, disinfection and the removal of specific substances. By intensive co-operation between the industries, the knowledge and the technologies developed in this project will be broadly transferred and implemented. This AquaFit4Use project is based on the work of the Working group Water in Industry of the EU Water Platform WSSTP; 40 % of the project partners of AquaFit4Use were involved in this working group. The expected impacts of AquaFit4Use are: A substantial reduction of fresh water needs (20 to 60%) and effluent discharge of industries; Integrating process technologies for further closing the water cycles; Improved process stability and product quality in the different sectors and strengthening the competitiveness of the European Water Industry.

Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: NMP.2012.1.2-1 | Award Amount: 14.00M | Year: 2013

NANOREM is designed to unlock the potential of nanoremediation and so support both the appropriate use of nanotechnology in restoring land and aquifer resources and the development of the knowledge-based economy at a world leading level for the benefit of a wide range of users in the EU environmental sector. NANOREM uniquely takes a holistic approach to examining how the potential for nanoremediation can be developed and applied in practice, to enhance a stronger development of nanoremediation markets and applications in the EU. NANOREMs ambitious objectives are: 1) Identification of the most appropriate nanoremediation technological approaches to achieve a step change in practical remediation performance. Development of lower cost production techniques and production at commercially relevant scales, also for large scale applications. 2) Determination of the mobility and migration potential of nanoparticles in the subsurface, and their potential to cause harm, focusing on the NP types most likely to be adopted into practical use in the EU. 3) Development of a comprehensive tool box for field scale observation of nanoremediation performance and determination of the fate of NPs in the subsurface, including analytical methods, field measurement devices, decision support and numerical tools. 4) Dissemination and dialogue with key stakeholder interests to ensure that research, development and demonstration meets end-user and regulatory requirements and information and knowledge is shared widely across the EU. 5) Provide applications at representative scales including field sites to validate cost, performance, and fate and transport findings. The NANOREM consortium is multidisciplinary, cross-sectoral and transnational. It includes 28 partners from 12 countries organized in 11 work packages. The consortium includes 18 of the leading nanoremediation research groups in the EU, 10 industry and service providers (8 SMEs) and one organisation with policy and regulatory interest.

Discover hidden collaborations