München, Germany
München, Germany

Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-32-2014 | Award Amount: 3.00M | Year: 2015

Cancer treatment platforms that involve the use of the adaptive immune system have demonstrated profound tumour regressions including complete cure. Importantly, technological advances in next-generation sequencing (NGS) allow for the first time the development of personalised cancer immunotherapies that target patient specific mutations. However, clinical application is currently hampered by specific bottlenecks in bioinformatics, which we aim to address in this proposal. The overall objective of our trans-disciplinary network of leading experts in bioinformatics and cancer immunology is to develop an Advanced bioinformatics platform for PERrsonalised cancer IMmunotherapy (APERIM). Specifically we aim to develop: 1) database for the integration of NGS data, images of whole tissue slides of tumour sections, and clinical data. To enhance the usability and the data sharing we will use semantic web technologies, and will provide standardised interfaces to a set of analytical tools. 2) tools for automated quantification of tumour-infiltrating lymphocytes using whole tissue slide images and NGS data for patient stratification. 3) analytical pipeline for NGS-guided individualised cancer vaccines including crucial NGS data analysis and epitope selection components for the selection of vaccination targets. 4) a method for deriving T-cell receptor (TCR) sequences from NGS data and predicting TCR specificity. We will achieve these aims using unique training and validation datasets available to the consortium. We will develop user-friendly software modules as well as analytical standard operating procedures for clinical use, and apply the bioinformatics platform in clinical settings. The bioinformatics platform will considerably accelerate the clinical translation and maximise the accessibility and utility of biomedical data in research and medicine.


Shalaly N.D.,Astrazeneca | Shalaly N.D.,KTH Royal Institute of Technology | Aneiros E.,Astrazeneca | Aneiros E.,Lead Technologies | And 8 more authors.
Journal of Biomolecular Screening | Year: 2015

According to the gate control theory of pain, the glycine receptors (GlyRs) are putative targets for development of therapeutic analgesics. A possible approach for novel analgesics is to develop a positive modulator of the glycine-activated Cl- channels. Unfortunately, there has been limited success in developing drug-like small molecules to study the impact of agonists or positive modulators on GlyRs. Eight RNA aptamers with low nanomolar affinity to GlyRα1 were generated, and their pharmacological properties analyzed. Cytochemistry using fluorescein-labeled aptamers demonstrated GlyRα1-dependent binding to the plasma membrane but also intracellular binding. Using a fluorescent membrane potential assay, we could identify five aptamers to be positive modulators. The positive modulation of one of the aptamers was confirmed by patch-clamp electrophysiology on L(tk) cells expressing GlyRα1 and/or GlyRα1β. This aptamer potentiated whole-cell Cl- currents in the presence of low concentrations of glycine. To our knowledge, this is the first demonstration ever of RNA aptamers acting as positive modulators for an ion channel. We believe that these aptamers are unique and valuable tools for further studies of GlyR biology and possibly also as tools for assay development in identifying small-molecule agonists and positive modulators. © 2015 Society for Laboratory Automation and Screening.


Janowski R.,Helmholtz Center Munich | Heinz G.A.,Helmholtz Center Munich | Heinz G.A.,Ludwig Maximilians University of Munich | Schlundt A.,Helmholtz Center Munich | And 16 more authors.
Nature Communications | Year: 2016

The RNA-binding protein Roquin is required to prevent autoimmunity. Roquin controls T-helper cell activation and differentiation by limiting the induced expression of costimulatory receptors such as tumor necrosis factor receptor superfamily 4 (Tnfrs4 or Ox40). A constitutive decay element (CDE) with a characteristic triloop hairpin was previously shown to be recognized by Roquin. Here we use SELEX assays to identify a novel U-rich hexaloop motif, representing an alternative decay element (ADE). Crystal structures and NMR data show that the Roquin-1 ROQ domain recognizes hexaloops in the SELEX-derived ADE and in an ADE-like variant present in the Ox40 3′-UTR with identical binding modes. In cells, ADE-like and CDE-like motifs cooperate in the repression of Ox40 by Roquin. Our data reveal an unexpected recognition of hexaloop cis elements for the posttranscriptional regulation of target messenger RNAs by Roquin.


Blind M.,AptaIT GmbH | Blank M.,AptaIT GmbH
Molecular Therapy - Nucleic Acids | Year: 2015

Over the last decade, aptamers have begun to find their way from basic research to diverse commercial applications. The development of diagnostics is even more widespread than clinical applications because aptamers do not have to be extensively modified to enhance their in vivo stability and pharmacokinetics in diagnostic assays. The increasing attention has propelled the technical progress of the in vitro selection technology (SELEX) to enhance the efficiency of developing aptamers for commercially interesting targets. This review highlights recent progress in the technical steps of a SELEX experiment with a focus on high-throughput next-generation sequencing and bioinformatics. Achievements have been made in the optimization of aptamer libraries, separation schemes, amplification of the selected libraries and the identification of aptamer sequences from enriched libraries. © 2015 The American Society of Gene & Cell Therapy All rights reserved.


PubMed | AptaIT GmbH, Pelago Bioscience, Astrazeneca and Uppsala University
Type: Journal Article | Journal: Journal of biomolecular screening | Year: 2015

According to the gate control theory of pain, the glycine receptors (GlyRs) are putative targets for development of therapeutic analgesics. A possible approach for novel analgesics is to develop a positive modulator of the glycine-activated Cl(-) channels. Unfortunately, there has been limited success in developing drug-like small molecules to study the impact of agonists or positive modulators on GlyRs. Eight RNA aptamers with low nanomolar affinity to GlyR1 were generated, and their pharmacological properties analyzed. Cytochemistry using fluorescein-labeled aptamers demonstrated GlyR1-dependent binding to the plasma membrane but also intracellular binding. Using a fluorescent membrane potential assay, we could identify five aptamers to be positive modulators. The positive modulation of one of the aptamers was confirmed by patch-clamp electrophysiology on L(tk) cells expressing GlyR1 and/or GlyR1. This aptamer potentiated whole-cell Cl(-) currents in the presence of low concentrations of glycine. To our knowledge, this is the first demonstration ever of RNA aptamers acting as positive modulators for an ion channel. We believe that these aptamers are unique and valuable tools for further studies of GlyR biology and possibly also as tools for assay development in identifying small-molecule agonists and positive modulators.


PubMed | AptaIT GmbH
Type: | Journal: Methods in molecular biology (Clifton, N.J.) | Year: 2015

In silico analysis of next-generation sequencing data (NGS; also termed deep sequencing) derived from in vitro selection experiments enables the analysis of the SELEX procedure (Systematic Evolution of Ligands by EXponential enrichment) in an unprecedented depth and improves the identification of aptamers. Besides quality control and optimization of starting libraries, advanced screening strategies for difficult targets or early identification of rare but high quality aptamers which are otherwise lost in the in vitro selection experiments become possible. The high information content of sequence data obtained from selection experiments is furthermore useful for subsequent lead optimization.

Loading AptaIT GmbH collaborators
Loading AptaIT GmbH collaborators