Entity

Time filter

Source Type

Telford, TN, United States

West L.,Imperial College London | Lowman D.W.,East Tennessee State University | Lowman D.W.,AppRidge International LLC | Mora-Montes H.M.,University of Aberdeen | And 8 more authors.
Journal of Biological Chemistry | Year: 2013

Background: Candida glabrata virulence is poorly understood at the molecular level. Results: Inactivation of components of the C. glabrata glycosylation machinery results in changes in fungal mannan structure and altered virulence. Conclusion: Changes in C. glabrata cell wall architecture impact the host-pathogen interactions. Significance: Greater understanding of C. glabrata virulence will provide insights that can be adopted for development of novel diagnostic and therapeutic interventions. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Source


Lowman D.W.,East Tennessee State University | Lowman D.W.,AppRidge International LLC | Ensley H.E.,Tulane University | Greene R.R.,East Tennessee State University | And 3 more authors.
Carbohydrate Research | Year: 2011

The Candida albicans cell wall provides an architecture that allows for the organism to survive environmental stress as well as interaction with host tissues. Previous work has focused on growing C. albicans on media such as Sabouraud or YPD at 30 °C. Because C. albicans normally colonizes a host, we hypothesized that cultivation on blood or serum at 37 °C would result in structural changes in cell wall mannan. C. albicans SC5314 was inoculated onto YPD, 5% blood, or 5% serum agar media three successive times at 30 °C and 37 °C, then cultivated overnight at 30 °C in YPD. The mannan was extracted and characterized using 1D and 2D 1H NMR techniques. At 30 °C cells grown in blood and serum contain less acid-stable terminal β-(1→2)-linked d-mannose and α-(1→2)-linked d-mannose-containing side chains, while the acid-labile side chains of mannan grown in blood and serum contain fewer β-Man-(1→2)-α-Man- (1→ side chains. The decrement in acid-stable mannan side chains is greater at 37 °C than at 30 °C. Cells grown on blood at 37 °C show fewer →6)-α-Man-(1→ structural motifs in the acid-stable polymer backbone. The data indicate that C. albicans, grown on media containing host-derived components, produces less complex mannan. This is accentuated when the cells are cultured at 37 °C. This study demonstrates that the C. albicans cell wall is a dynamic and adaptive organelle, which alters its structural phenotype in response to growth in host-derived media at physiological temperature. © 2011 Elsevier Ltd. All rights reserved. Source


Hall R.A.,Aberdeen Group | Bates S.,University of Exeter | Lenardon M.D.,Aberdeen Group | MacCallum D.M.,Aberdeen Group | And 8 more authors.
PLoS Pathogens | Year: 2013

The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans. © 2013 Hall et al. Source


Kruppa M.,East Tennessee State University | Greene R.R.,East Tennessee State University | Noss I.,East Tennessee State University | Lowman D.W.,East Tennessee State University | And 2 more authors.
Glycobiology | Year: 2011

The cell wall of Candida albicans is central to the yeasts ability to withstand osmotic challenge, to adhere to host cells, to interact with the innate immune system and ultimately to the virulence of the organism. Little is known about the effect of culture conditions on the cell wall structure and composition of C. albicans. We examined the effect of different media and culture temperatures on the molecular weight (Mw), polymer distribution and composition of cell wall mannan and mannoprotein complex. Strain SC5314 was inoculated from frozen stock onto yeast peptone dextrose (YPD), blood or 5 serum agar media at 30 or 37°C prior to mannan/mannoprotein extraction. Cultivation of the yeast in blood or serum at physiologic temperature resulted in an additive effect on Mw, however, cultivation media had the greatest impact on Mw. Mannan from a yeast grown on blood or serum at 30°C showed a 38.9 and 28.6 increase in Mw, when compared with mannan from YPD-grown yeast at 30°C. Mannan from the yeast pregrown on blood or serum at 37°C showed increased Mw (8.8 and 26.3) when compared with YPD mannan at 37°C. The changes in Mw over the entire polymer distribution were due to an increase in the amount of mannoprotein (23.8-100) and a decrease in cell wall mannan (5.7-17.3). We conclude that C. albicans alters the composition of its cell wall, and thus its phenotype, in response to cultivation in blood, serum and/or physiologic temperature by increasing the amount of the mannoprotein and decreasing the amount of the mannan in the cell wall. © 2011 The Author. Source


Lowman D.W.,East Tennessee State University | Lowman D.W.,AppRidge International LLC | West L.J.,Imperial College London | Bearden D.W.,U.S. National Institute of Standards and Technology | And 6 more authors.
PLoS ONE | Year: 2011

β-glucan is a (1→3)-β-linked glucose polymer with (1→6)-β-linked side chains and a major component of fungal cell walls. β-glucans provide structural integrity to the fungal cell wall. The nature of the (1-6)-β-linked side chain structure of fungal (1→3,1→6)-β-D-glucans has been very difficult to elucidate. Herein, we report the first detailed structural characterization of the (1→6)-β-linked side chains of Candida glabrata using high-field NMR. The (1→6)-β-linked side chains have an average length of 4 to 5 repeat units spaced every 21 repeat units along the (1→3)-linked polymer backbone. Computer modeling suggests that the side chains have a bent curve structure that allows for a flexible interconnection with parallel (1→3)-β-D-glucan polymers, and/or as a point of attachment for proteins. Based on these observations we propose new approaches to how (1→6)-β-linked side chains interconnect with neighboring glucan polymers in a manner that maximizes fungal cell wall strength, while also allowing for flexibility, or plasticity. Source

Discover hidden collaborations