Highlands, NJ, United States
Highlands, NJ, United States

Time filter

Source Type

Benilov A.Y.,Applied Marine Physics Laboratory
Journal of Geophysical Research: Oceans | Year: 2012

The turbulence (the random vortex motions) of the upper ocean is nourished by the energy and momentum of the surface waves (the potential motion). The statistical characteristics of the turbulence (turbulent kinetic energy, dissipation rate, and Reynolds stresses) depend on the state of the ocean surface waves. This paper discusses the possibilities of generating this turbulence using the vortex instability of the potential surface waves. The vortex component of fluctuations of velocity field and possibly the interaction between both the vortex and potential motions cause the vertical transport of the momentum. The Reynolds tensor is a linear function of the correlation tensor of vortex field. The initial small vortex perturbations always exist in the upper ocean because of the molecular viscosity influences, especially near the free surface, and the fluctuations of the seawater density. The horizontal inhomogeneities of the seawater density produce the vortex field even if the initial vorticity was zero and the initial flow was the potential flow. The evolution of the small initial vortex disturbances in the velocity field of potential linear surface waves is reduced to a coupled set of linear ordinary differential equations of the first order with periodic coefficients. The solution of this problem shows that the small initial vortex perturbations of potential linear surface waves always grow. The initial small vortex perturbations interacting with the potential surface wave produce the small-scale turbulence (Novikov's turbulence) that finally causes the viscous dissipation of the potential surface wave. The wave-induced turbulence can be considered as developed turbulence with a well distinguishable range of the turbulent wave numbers k where turbulence obeys the Kolmogorov's self-similarity law. © 2012. American Geophysical Union. All Rights Reserved.

Loading Applied Marine Physics Laboratory collaborators
Loading Applied Marine Physics Laboratory collaborators