Time filter

Source Type

Sunnyvale, CA, United States

Applied Isotope Technologies Inc. | Date: 2013-05-29

Medical diagnostic reagents and assays for testing of body fluids.

Zinn G.M.,Duquesne University | Rahman G.M.M.,Applied Isotope Technologies Inc. | Faber S.,Childrens Institute | Wolle M.M.,Duquesne University | And 2 more authors.
Journal of Dietary Supplements | Year: 2016

Dietary supplements were analyzed by evaluating the elemental content in six widely consumed products manufactured by four well-known companies. The elements included the neurotoxic and carcinogenic elements cadmium, mercury, aluminum, lead, arsenic, and antimony, as well as the essential elements zinc, selenium, chromium, iron, and copper, which were often not listed as ingredients on the product labels. Contamination from either xenobiotic or essential elements was found in all samples analyzed. The samples were prepared using US Environmental Protection Agency (EPA) Method 3052, microwave-enhanced digestion. The resulting digests were analyzed by Inductively Coupled Plasma-Mass Spectrometry based on EPA Method 6020B. The analytical protocols were validated by analyzing a multivitamin standard reference material, the National Institute of Standards and Technology Standard Reference Material 3280. The application of EPA standard methods demonstrated their utility in making accurate and precise measurements in complex matrices with multiple ingredients and excipients. In the future, the use of these methods could provide a uniform quality assurance protocol that can be implemented along with other industry guidelines to improve the production of dietary supplements. © 2016 Copyright © Taylor & Francis Group, LLC.

Fahrenholz T.,Duquesne University | Wolle M.M.,Duquesne University | Kingston H.M.S.,Duquesne University | Faber S.,Childrens Institute | And 5 more authors.
Analytical Chemistry | Year: 2015

Novel protocols were developed to accurately quantify reduced (GSH), oxidized (GSSG) and total (tGSH) glutathione in biological samples using molecular speciated isotope dilution mass spectrometry (SIDMS). For GSH and GSSG measurement, the sample was spiked with isotopically enriched analogues of the analytes (310GSH and 616GSSG), along with N-ethylmaleimide (NEM), and treated with acetonitrile to solubilize the endogenous analytes via protein precipitation and equilibrate them with the spikes. The supernatant was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the analytes were quantified with simultaneous tracking and correction for auto-oxidation of GSH to GSSG. For tGSH assay, a 310GSH-spiked sample was treated with dithiothreitol (DTT) to convert disulfide-bonded glutathione to GSH. After removing the protein, the supernatant was analyzed by LC-MS/MS and the analyte was quantified by single-spiking isotope dilution mass spectrometry (IDMS). The mathematical relationships in IDMS and SIDMS quantifications are based on isotopic ratios and do not involve calibration curves. The protocols were validated using spike recovery tests and by analyzing synthetic standard solutions. Red blood cell (RBC) and saliva samples obtained from healthy subjects, and whole blood samples collected and shipped from a remote location were analyzed. The concentrations of tGSH in the RBC and whole blood samples were 2 orders of magnitude higher than those found in saliva. The fractions of GSSG were 0.2-2.2% (RBC and blood) and 15-47% (saliva) of the free glutathione (GSH + 2xGSSG) in the corresponding samples. Up to 3% GSH was auto-oxidized to GSSG during sample workup; the highest oxidations (>1%) were in the saliva samples. © 2014 American Chemical Society.

Bradburne C.,Johns Hopkins University | Graham D.,The Center for Resources in Integrative Biology | Kingston H.M.,Duquesne University | Brenner R.,U.S. Air force | And 2 more authors.
Military Medicine | Year: 2015

Systems biology (‘omics) technologies are emerging as tools for the comprehensive analysis and monitoring of human health. In order for these tools to be used in military medicine, clinical sampling and biobanking will need to be optimized to be compatible with downstream processing and analysis for each class of molecule measured. This article provides an overview of ‘omics technologies, including instrumentation, tools, and methods, and their potential application for warfighter exposure monitoring. We discuss the current state and the potential utility of personalized data from a variety of ‘omics sources including genomics, epigenomics, transcriptomics, metabolomics, proteomics, lipidomics, and efforts to combine their use. Issues in the “sample-to-answer” workflow, including collection and biobanking are discussed, as well as national efforts for standardization and clinical interpretation. Establishment of these emerging capabilities, along with accurate xenobiotic monitoring, for the Department of Defense could provide new and effective tools for environmental health monitoring at all duty stations, including deployed locations. © 2015 Association of Military Surgeons of the U.S. All rights reserved.

Boggess A.J.,Duquesne University | Rahman G.M.M.,Applied Isotope Technologies Inc. | Pamukcu M.,Applied Isotope Technologies Inc. | Faber S.,The Childrens Institute Of Pittsburgh | Kingston H.M.S.,Duquesne University
Analyst | Year: 2014

A robust method has been developed for easy transfer between analytical laboratories to obtain highly accurate and reproducible quantification of persistent organic pollutants (POPs) in micro-volumes of serum. This method is suited for analysts researching the impact of environmental exposure on human health. When performed by highly trained analysts, existing methods can produce high quality data; however, complex sample preparation steps often cannot be consistently replicated by laboratories, leading to variance in extraction recovery and quantitation. By combining stir-bar sorptive extraction (SBSE) with direct isotope dilution (D-ID) mass spectrometry quantification, a new analytical method was developed. The D-ID quantification significantly improved accuracy, corrected sample-to-sample irreproducibility, and reduced sample preparation time. Independent production of statistically identical data then confirmed transfer of the validated operating protocol to an off-site laboratory with different instrument models. SBSE performance was compared with industry-accepted extraction techniques. D-ID quantification was compared with peer-reviewed relative isotopic response factor (RF) quantification methods. Holding other variables constant, D-ID improved accuracy by 250% and precision by 300% compared with RF; SBSE improved accuracy by 37% compared to industry-accepted extraction methods. Limits of quantification of the analytes ranged from 60 pg g-1 to 1 μg g-1. Protocol transfer exhibited <7% mean between-laboratory error and <2% mean within-laboratory RSD. These results indicate that a transferable method has been developed for academic, government, commercial, and clinical laboratories seeking to maximize throughput and improve quantitative validity. This validated method was applied in a recent clinical study to assess non-communicable disease in children in Pennsylvania, USA. This journal is © the Partner Organisations 2014.

Discover hidden collaborations