Entity

Time filter

Source Type

Heidelberg, Germany

Patent
Apogenix | Date: 2015-10-27

The present invention relates to a method for diagnosing a cancer disease, comprising (a) determining the expression of CD95L in a cancer sample, and (b) classifying the cancer disease according the level of CD95L expression.


The present invention relates to inhibitors of the CD95 signaling pathway for the use in the treatment of Myelodysplastic Syndrom (MDS) wherein the MDS is selected from the IPSS low risk MDS subgroup and/or the IPSS intermediate-1 (int-1) risk MDS subgroup as well as a method for the diagnosis of MDS.


Patent
Apogenix | Date: 2013-02-25

The present invention refers to a fusion protein comprising a TNF-superfamily (TNFSF) cytokine or a receptor binding domain thereof fused to a collectin trimerization domain, to a nucleic acid molecule encoding the fusion protein, and to a cell comprising the nucleic acid molecule. The fusion protein is present as a trimeric complex or as an oligomer thereof. The fusion protein, the nucleic acid, and the cell is suitable as pharmaceutical composition or for therapeutic, diagnostic and/or research applications.


Patent
Apogenix | Date: 2014-01-21

The present invention refers to fusion proteins comprising a neck region and carbohydrate recognition domain of a collectin trimerization domain, a linker element and an effector polypeptide. Further the invention refers to a nucleic acid encoding the said fusion protein. The fusion proteins, the nucleic acid, and the cell are suitable as pharmaceutical composition or for therapeutic, diagnostic and/or research applications as described herein.


Patent
Apogenix | Date: 2014-12-02

The present invention refers to single-chain fusion proteins comprising three soluble TNF superfamily (TNFSF) cytokine domains and nucleic acid molecules encoding these fusion proteins. The fusion proteins are substantially non-aggregating and suitable for therapeutic, diagnostic and/or research applications.

Discover hidden collaborations