Entity

Time filter

Source Type


Lajter I.,University of Szeged | Vasas A.,University of Szeged | Orvos P.,University of Szeged | Orvos P.,Rytmion Ltd. | And 7 more authors.
Planta Medica | Year: 2013

The G protein-activated inwardly rectifying K+ channel-modulatory activities of Polygonum persicaria extracts were investigated by using an automated patch-clamp method, with the aim of identifying natural sources of promising ion channel-blocking compounds. The chloroform extract of the whole plant at 0.1 mg/mL exhibited high G protein-activated inwardly rectifying K+ channel-inhibitory activity. Fractionation of this extract by vacuum liquid chromatography on RP-silica gel resulted in 6 fractions, which were evaluated for G protein-activated inwardly rectifying K+ channel-modulatory activity. RP-HPLC of the most active fractions afforded the main compounds 1-4 in pure form and a mixture containing the minor constituents. The structures were identified by means of UV, HRMS, and advanced NMR methods as 3-O-senecioyl-isorhamnetin (1), 3-O-angeloyl-isorhamnetin (2), 5,3′,4′,5′-tetramethoxy-6,7-methylenedioxyflavone (3), and 3,5,3′,4′,5′-pentamethoxy-6,7-methylenedioxyflavone (4). Compounds 1-4 are new natural products, though 4 was reported earlier as a synthetic compound. Neither the individual, nor the combined application of compounds 1-4 modified the G protein-activated inwardly rectifying K+ channel activity. However, a marked G protein-activated inwardly rectifying K+ current-inhibitory effect was detected on use of the HPLC eluates containing the minor compounds. These results indicate the presence of electrophysiologically active agents among the minor compounds. © Georg Thieme Verlag KG Stuttgart · New York. Source


Hada V.,API Research and Development | Hada V.,API Research and Development Spectroscopic Research | Dubrovay Z.,API Research and Development | Dubrovay Z.,API Research and Development Spectroscopic Research | And 5 more authors.
Journal of Pharmaceutical and Biomedical Analysis | Year: 2013

In the course of developing a new, improved process at Gedeon Richter for the production of the "bisindole" alkaloids vinblastine (VLB) and vincristine (VCR), some novel VLB/VCR-related trace impurities were detected by analytical HPLC at the production site. Repeated attempts to isolate and purify these unknown impurities by preparative liquid chromatography yielded small amounts of materials whose main components were the unknown impurities, but were still contaminated with other VLB/VCR-related compounds. In spite of these difficulties, by using a combination of high-resolution (LC-)MS/MS and off-line 1D and 2D ultra high-field NMR techniques and leaning on the relevant spectroscopic data for VLB and VCR as discussed in Part 1 [1], we could unambiguously solve the structures of, and could give a complete spectral characterization for, the trace impurities. Among these, although "cyclo-VCR" (impurity-2), "[VCR]-C(16)-COOEt" (impurity-4) and "[VLB]-C(16)-COOEt" (impurity-5) are known synthetic VLB/VCR-derivatives, and "[VLB]-C(14')-OH(α)" is a known natural alkaloid (leurocolombine), they are new VLB/VCR impurities, and "[VCR]-N(4')-C(21')-iminium-salt" (impurity-3) is also a new chemical structure which provides direct proof of a hypothetic metabolic pathway of VLB/VCR. The structure determination of impurity-4 and impurity-5, and the rationalization of their origin was a particularly challenging task: since VCR is produced by the oxidation of VLB, it may be assumed that [VCR]-C(16)-COOEt (impurity-4) originates from the oxidization of [VLB]-C(16)-COOEt (impurity-5). This is consistent with the finding that [VLB]-C(16)-COOEt (impurity-5) could be detected by LC-MS/MS in the raw VLB samples in similar amounts as [VCR]-C(16)-COOEt (impurity-4) in the final VCR product. Our investigations indicate that [VLB]-C(16)-COOEt (impurity-5) does not form directly from VLB during extraction or chromatographic separation, suggesting that it may be a new natural product. © 2012 Elsevier B.V. Source


Beni Z.,API Research and Development Spectroscopic Research | Hada V.,API Research and Development Spectroscopic Research | Varga E.,API Research and Development Steroid Chemistry | Maho S.,API Research and Development Steroid Chemistry | And 2 more authors.
Journal of Pharmaceutical and Biomedical Analysis | Year: 2013

Herein we discuss the structure elucidation of a labile estradiol-related degradant, X1. X1 was detected at Gedeon Richter as an unknown trace impurity in a pharmaceutical formulation containing estradiol (1a) and norethisterone acetate (NA) as active ingredients. The structural identification of X1 proved to be an unusually complex task involving an initial structural hypothesis based on some limited analytical data (UV) obtained from the formulation, synthetic work targeting the proposed structure, chromatographic enrichment from the synthetic reaction mixture, (HPLC)-MS and MS-MS studies of the formulation and of samples from the synthesis using almost all available ionization modes, preparative LC enrichment, and the complementary use of off-line and on-line NMR techniques. Based on these results, X1 was finally characterized as a new oxidative product of estradiol, containing an epoxy function over the C9-C10 bond. During the structure determination of X1 its secondary and tertiary decomposition products were also identified as a new secoepoxy (6) and a known seco derivative (5a) of estradiol, respectively. On this basis a new oxidative decomposition mechanism of estradiol and its analogues could be proposed. A generalization of the mechanism of this pathway can more readily explain the formation of some oxidative secosteroid degradants than the mechanism proposed earlier in the literature. © 2013 Elsevier B.V. Source


Dubrovay Z.,API Research and Development | Dubrovay Z.,API Research and Development Spectroscopic Research | Hada V.,API Research and Development | Hada V.,API Research and Development Spectroscopic Research | And 3 more authors.
Journal of Pharmaceutical and Biomedical Analysis | Year: 2013

In the course of exploring the possibilities of developing a new, improved process at Gedeon Richter for the production of the "bisindole" alkaloids vinblastine (VLB) and vincristine (VCR), some novel VLB/VCR-related trace impurities were detected by analytical HPLC. Following isolation by preparative HPLC, a combination of 1D and 2D ultra high-field NMR and high-resolution (HR) (LC-)MS/MS studies allowed the structural identification and complete spectral characterization of several hitherto unpublished VLB/VCR-analogue impurities. Since the impurities could not be isolated in entirely pure forms and were available only in minute, mass-limited quantities, accessing the spectral information needed for their ab initio structure determination was met with various practical difficulties. Successful structure determination therefore relied heavily on the availability and use of detailed and definitive spectral data for both VLB and VCR. In particular, the utilization of detailed 1H, 13C, and 15N NMR assignments as well as 1H-1H, 1H-13C and 1H-15N spin-spin connectivities pertaining to different solvents for VLB/VCR base and sulphate salt was required. Although NMR studies on VLB base and other bisindoles were reported earlier in the literature, an NMR characterization of VLB and VCR under the above-mentioned circumstances and using ultra-high field instrumentation is either scarcely available or entirely lacking, therefore the necessary data had to be obtained in-house. Likewise, a modern tandem HR-ESI-MS/MSn fragmentation study of VLB and VCR has not been published yet. In the present paper we therefore give a thorough NMR and MS characterization of VLB and VCR specifically with a view to filling this void and to provide sufficiently extensive and solid reference data for the structural investigation of the aforementioned VLB/VCR impurities. Besides being scientifically relevant in its own right, the disclosed data should be useful for anyone interested in VLB/VCR-related molecules at a structural level. © 2012 Elsevier B.V. Source


Beni Z.,API Research and Development Spectroscopic Research | Hada V.,API Research and Development Spectroscopic Research | Dubrovay Z.,API Research and Development Spectroscopic Research | Szantay C.,API Research and Development Spectroscopic Research
Journal of Pharmaceutical and Biomedical Analysis | Year: 2012

In this review our aim is to look back on how the structure elucidation of bisindoles, especially with focus placed on vinblastine and vincristine analogues, has evolved alongside with the development of MS and NMR over the last 60 years from the perspective of our present-day use of state-of-the-art MS and NMR instrumentation and on the basis of our own accumulated views and experience in the field. © 2012 Elsevier B.V. Source

Discover hidden collaborations