Entity

Time filter

Source Type

Corteno Golgi, Italy

Trovato L.,Human Brain Wave srl | del Fante C.,Apheresis and Cell Therapy Unit | Cervio M.,Apheresis and Cell Therapy Unit | Lampinen M.,University of Helsinki | And 7 more authors.
Journal of Cellular Physiology | Year: 2015

Autologous graft is considered the gold standard of graft materials; however, this approach is still limited due to both small amount of tissue that can be collected and to reduced cell viability of cells that can be obtained. The aim of this preliminary study was to demonstrate the efficacy of an innovative medical device called Rigeneracons® (CE certified Class I) to provide autologous micro-grafts immediately available to be used in the clinical practice. Moreover, Rigeneracons® is an instrument able to create micro-grafts enriched of progenitors cells which maintain their regenerative and differentiation potential. We reported preliminary data about viability cell of samples derived from different kind of human tissues, such as periosteum, cardiac atrial appendage biopsy, and lateral rectus muscle of eyeball and disaggregated by Rigeneracons®. In all cases we observed that micro-grafts obtained by Rigeneracons® displayed high cell viability. Furthermore, by cell characterization of periosteum samples, we also evidenced an high positivity to mesenchymal cell markers, suggesting an optimal regenerative potential. © 2015 Wiley Periodicals, Inc. Source


Sandri G.,University of Pavia | Bonferoni M.C.,University of Pavia | Rossi S.,University of Pavia | Ferrari F.,University of Pavia | And 8 more authors.
Expert Opinion on Drug Delivery | Year: 2015

Introduction: The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems.Methods: The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion.Results: Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure.Conclusion: Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing. © 2014 Informa UK, Ltd. Source


Celesti G.,Humanitas Clinical and Research CenterRozzano | Romano B.,Apheresis and Cell Therapy Unit | Laghi L.,Humanitas Clinical and Research CenterRozzano | Muro A.F.,The International Center for Genetic Engineering and BiotechnologyTrieste Italy
Stem Cells | Year: 2016

Abstract: Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA+/+) or excluding (EIIIA-/-) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. © 2016 AlphaMed Press. Source


Del Fante C.,University of Pavia | Del Fante C.,Apheresis and Cell Therapy Unit | Scudeller L.,University of Pavia | Oggionni T.,University of Pavia | And 6 more authors.
Respiration | Year: 2015

Background: Extracorporeal photochemotherapy (ECP) for chronic lung allograft dysfunction (CLAD) has been reported as beneficial in a few short-term studies. Objectives: In this retrospective cohort study on 48 CLAD patients treated by ECP (off-line technique) for a period of >8 years (compared to 58 controls), we explored potential predictors of survival and response. Methods: Failures were defined as a decrease in forced expiratory volume in 1 s (FEV1) of >10% from ECP initiation. Results: ECP patients were enrolled between February 2003 and December 2013; 14 (29.2%) with restrictive allograft syndrome (RAS) and 34 with bronchiolitis obliterans syndrome. Grade 1 severity was indicated in 58.3%, grade 2 in 20.8%, and grade 3 in 20.8% of patients. The median follow-up was 65 months (cumulative 2,284.4 person-months). Twenty (41.7%) patients died, including 17 (85%) CLAD-related deaths. Among the controls, there were 42 deaths (72.4%), of which 32 (76.2%) were CLAD related, over a median of 51 months (cumulative 3,066.5 person-months; p = 0.09). Among ECP patients, the FEV1 slope flattened out after a decline in the initial months (slope -19 ml/month in months 0-6, +4 in months 36-48 and later; p = 0.001). RAS was associated with poorer survival, whereas a 'rapid decline in the previous 6 months' was not. No ECP side effects or complications were observed. Conclusion: Long-term ECP for CLAD is safe and reduces FEV1 decline over time; the RAS phenotype might show a poorer response. ECP deserves to be evaluated in a randomized controlled trial. © 2015 S. Karger AG, Basel. Source


Sandri G.,University of Pavia | Bonferoni M.C.,University of Pavia | D'Autilia F.,University of Pavia | Rossi S.,University of Pavia | And 7 more authors.
European Journal of Pharmaceutics and Biopharmaceutics | Year: 2013

The management of difficult to heal wounds can considerably reduce the time required for tissue repairing and promote the healing process, minimizing the risk of infection. Silver compounds, especially silver sulfadiazine (AgSD), are often used to prevent or to treat wound colonization, also in presence of antibiotic-resistant bacteria. However, AgSD has been shown to be cytotoxic in vitro toward fibroblasts and keratinocytes and consequently to retard wound healing in vivo. Recently, platelet lysate (PL) has been proposed in clinical practice for the healing of persistent lesions. The aim of the present work was the development of wound dressings based on AgSD loaded in solid lipid nanoparticles (SLNs), to be used in association with PL for the treatment for skin lesions. SLN were based on chondroitin sulfate and sodium hyaluronate, bioactive polymers characterized by well-known tissue repairing properties. The encapsulation of AgSD in SLN aimed at preventing the cytotoxic effect of the drug on normal human dermal fibroblasts (NHDFs) and at enabling the association of the drug with PL. SLN were loaded in wound dressings based on hydroxypropylmethyl cellulose (HPMC) or chitosan glutamate (CS glu). These polymers were chosen to obtain a sponge matrix with suitable elasticity and softness and, moreover, with good bioadhesive behavior on skin lesions. Dressings based on chitosan glutamate showed antimicrobial activity with and without PL. Even though further in vivo evaluation could be envisaged, chitosan based dressings demonstrated to be a suitable prototype for the treatment for skin lesions. © 2012 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations