Pasig City, Philippines
Pasig City, Philippines

Time filter

Source Type

Manalo P.C.,University of the Philippines at Diliman | Dimalanta C.B.,University of the Philippines at Diliman | Ramos N.T.,University of the Philippines at Diliman | Faustino-Eslava D.V.,University of the Philippines at Los Baños | And 3 more authors.
Surveys in Geophysics | Year: 2016

Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc–continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc–continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust–mantle interface. © 2016 Springer Science+Business Media Dordrecht


Manalo P.C.,University of the Philippines at Diliman | Dimalanta C.B.,University of the Philippines at Diliman | Faustino-Eslava D.V.,University of the Philippines at Los Baños | Payot B.D.,University of the Philippines at Diliman | And 4 more authors.
Terrestrial, Atmospheric and Oceanic Sciences | Year: 2015

This paper presents the first field, geochemical and geophysical information on the recently recognized Early Cretaceous Balud Ophiolitic Complex (BOC) in the island of Masbate in the Central Philippines. Mapping of the western limb of the island revealed that only the upper crustal section of the BOC is exposed in this area. Geochemically, the pillow basalts are characterized by transitional mid-oceanic ridge basalt-island arc tholeiitic compositions. Gravity surveys yielded low Bouguer anomaly values that are consistent with the highly dismembered nature of the BOC. Short wavelength, high amplitude magnetic anomalies registered across the study area are attributed to shallow magnetic sources. This is taken to support the model that the ophiolitic complex occurs as thin crustal slivers that are not deeply-rooted in the mantle. Comparing BOC with other ophiolites in the Central Philippines, such as those in the islands of Sibuyan, Leyte and Bohol, suggests the possibility of a common or contiguous source for similarly-aged and geochemically composed crust-mantle sequences in the region.


Yumul G.P.,Apex Mining Company Inc. | Brown W.W.,Apex Mining Company Inc. | Dimalanta C.B.,University of the Philippines at Diliman | Ausa C.A.,Apex Mining Company Inc. | And 10 more authors.
Journal of Asian Earth Sciences | Year: 2016

The presence of adakites has been used as an indicator for the occurrence of gold mineralization in many mineral prospecting works. Traditionally, the unique geodynamic controls to adakite formation, particularly the high temperature gradient and other slab-melting requirements, have been taken as key elements that must be present during their formation. However, several studies have suggested alternative mechanisms. This paper presents fractional crystallization as the most viable mechanism for the generation of adakitic rocks in the Masara gold-silver mine in Eastern Mindanao, Philippines. Furthermore, this paper also argues that the occurrence of adakitic rocks does not necessarily indicate the presence of mineralization. Depending on the scale, their occurrence may be an exploration marker at a regional or district level, but at the mine-level, other more localized parameters will have to be considered. © 2016.


Salapare R.C.,University of the Philippines at Diliman | Dimalanta C.B.,University of the Philippines at Diliman | Ramos N.T.,University of the Philippines at Diliman | Manalo P.C.,University of the Philippines at Diliman | And 4 more authors.
Geophysical Journal International | Year: 2015

The Zambales Ophiolite Complex (ZOC) in the western portion of Luzon Island, Philippines represents a typical exposure of an emplaced crust-upper mantle section of an ancient lithosphere. The ZOC is divided into the Acoje and Coto Blocks based on petrological, geochemical and age disparities, thus implying diverse and complex origins for the archipelago's lithospheric sources.We used gravity and magnetic data to reveal differences in the subsurface characteristics of the two ophiolite blocks for the first time. Low Bouguer gravity (<135 mGal) and magnetic (<69 nT) anomalies characterize the ophiolitic units in the Acoje Block whereas high Bouguer gravity (>150 mGal) and magnetic (>110 nT) anomalies typify the Coto Block. Such contrasting signatures further extend at greater depths which reflect the disparities in the crustal density, the basement structure, and the depth to Moho. Petrophysical characteristics such as density, magnetic susceptibility and natural remanent magnetization (NRM) intensities correlate well with the interpreted Bouguer gravity and magnetic anomalies. Densities of gabbros and peridotites from the Acoje and Coto Blocks reveal mean values ranging from 2640 to 2810 kg m-3 and 2570 to 2690 kg m-3, respectively. Magnetic susceptibility (>4.43 × 10-3 SI) and NRM (>0.69 A m-1) data are also generally higher over the Coto Block. Both Bouguer gravity and magnetic anomaly maps reveal a prominent steep gradient that potentially marks the structural contact between Acoje and Coto Blocks. We further infer that the steep anomaly gradient validates the presence of the Lawis Fault Zone which separates the two ophiolite blocks in the Masinloc Massif. Recent field evidence from rock exposures in Coto reveals both right lateral and vertical displacements along the fault zone. © The Author 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society.


Dimalanta C.B.,University of the Philippines at Diliman | Salapare R.C.,University of the Philippines at Diliman | Faustino-Eslava D.V.,University of the Philippines at Los Baños | Ramos N.T.,University of the Philippines at Diliman | And 5 more authors.
Journal of Asian Earth Sciences | Year: 2015

The Zambales Ophiolite Complex in Luzon, Philippines is made up of two blocks with differing geochemical signatures and ages - the Middle Jurassic to Early Cretaceous Acoje Block-San Antonio Massif that is of island arc tholeiite composition and the Eocene Coto Block-Cabangan Massif which is of transitional mid-ocean ridge basalt-island arc tholeiite affinity. These ophiolitic bodies are overlain by Miocene to Pliocene sedimentary units whose petrochemistry are reported here for the first time. Varying degrees of influences from ophiolitic detritus and from arc volcanic materials, as shown by petrography and indicator elements including Cr, Co and Ni, are observed in these sedimentary formations from north to south and from the oldest to the youngest. The Early to Middle Miocene Cabaluan Formation, whose outcrops are found to overlie only the Acoje Block, registers a more dominant ophiolitic signature as compared to the Late Miocene to Pliocene Santa Cruz Formation. The Santa Cruz Formation is generally characterized by fewer ophiolitic clasts and higher amounts of felsic components. Additionally, within this formation itself, a pronounced compositional change is observed relative to its spatial distribution. From the south to the north, an increase in ophiolitic components and a relative decrease in felsic signature is noted in units of the Santa Cruz Formation. It is therefore inferred that changes in the petrochemistry of rocks from the older Cabaluan to the younger Santa Cruz sedimentary formations record a decline in the influx of ophiolitic detritus or, conversely, the introduction of more diverse sediment sources as the deposition progressed. Detrital zircon U-Pb ages from the Santa Cruz Formation, with peaks at 46.73 ± 0.94 and 5.78 ± 0.13. Ma, reflects this change in provenance from the unroofing of an Early Eocene oceanic crust to fresh contributions from an active volcanic arc during the Late Miocene. The contrast in compositions of the southern and northern Santa Cruz Formation also indicates a closer proximity of the southern units to the source of these non-ophiolitic sources, which most likely corresponds to the Pliocene volcanoes of the West Luzon Arc. © 2014 Elsevier Ltd.


Manalo P.C.,University of the Philippines at Diliman | Dimalanta C.B.,University of the Philippines at Diliman | Faustino-Eslava D.V.,University of the Philippines at Los Baños | Ramos N.T.,University of the Philippines at Diliman | And 3 more authors.
Journal of Asian Earth Sciences | Year: 2015

Offshore and ground gravity data were utilized to estimate crustal thickness across the Central Philippines where a transition from continental to island arc terrane occurs. Significant differences in gravity anomalies were observed between the Palawan Microcontinental Block (PCB) and the Philippine Mobile Belt (PMB), two major terranes that came together through arc-continent collision. Islands of the PCB (Mindoro, Tablas, Romblon, Sibuyan and western Panay), made up of an assortment of continent-derived sedimentary and igneous rocks and slivers of ophiolitic bodies, register lower Bouguer anomalies compared to that displayed by Masbate Island in the PMB. The calculated crustal thickness of this region exhibits a complex Moho topography of non-uniform depth across the collision zone with the thickest parts (~32. km) corresponding with ophiolitic units emplaced consequent to arc-continent collision. On the other hand, relatively thinner crust (~21. km) within the collision zone coincides with areas surmised to have undergone attenuation following intra-arc rifting. The same characteristics are observed offshore of western Mindoro and within the Marinduque Basin, areas known to have experienced crustal thinning following regional tectonic rearrangements that triggered riftings and intra-basin openings. © 2014 Elsevier Ltd.


Balmater H.G.,University of the Philippines | Manalo P.C.,University of the Philippines | Faustino-Eslava D.V.,University of the Philippines | Queano K.L.,Apex Mining Company Inc. | And 6 more authors.
Tectonophysics | Year: 2015

Samar island in the eastern part of Central Philippines is underlain by a complete ophiolite suite, the Samar Ophiolite. We present the first geochronological and paleomagnetic data for the Samar Ophiolite. Whole rock K-Ar dating of two basalt samples yielded an age of 100.2 ± 2.7 Ma and 97.9 ± 2.8 Ma. Thirteen sites in four localities yielded characteristic remanent magnetization with in situ direction of D = 340°, I = - 24°, k = 15, α95 = 11° and tilt-corrected direction of D = 342°, I = - 27°, k = 15, α95 = 11°. These values suggest that the ophiolitic basement rocks of Samar formed in the Late Cretaceous at a paleolatitude of 14°S ± 6°. The paleolatitude is several degrees south of the sub-equatorial positions calculated for the three other Mesozoic ophiolites of the Philippine Mobile Belt (PMB) whose paleomagnetism had been previously studied. The PMB ophiolites in eastern and central Philippines share a common age, geochemistry and paleolatitude with the Halmahera Ophiolite, suggesting that they originated from a Mesozoic supra-subduction zone that spanned a few degrees north of the equator to around 15°S. © 2015 Elsevier B.V..


Gabo J.A.S.,University of the Philippines | Gabo J.A.S.,Kyushu University | Dimalanta C.B.,University of the Philippines | Yumul G.P.,Apex Mining Company Inc. | And 3 more authors.
Terrestrial, Atmospheric and Oceanic Sciences | Year: 2015

Northwest Panay consists of two terranes that form part of the Central Philippine collision zone: Buruanga Peninsula and Antique Range. The Buruanga Peninsula consists of a Jurassic chert-clastic-limestone sequence, typical of oceanic plate stratigraphy of the Palawan Micro-continental Block. The Antique Range is characterized by Antique Ophiolite Complex peridotites and Miocene volcanic and clastic rocks, representing obducted oceanic crust that serves as the oceanic leading edge of the collision with the Philippine Mobile Belt. The Nabas Fault is identified as the boundary between the two terranes. This study employed the gravity method to characterize the Northwest Panay subsurface structure. Results indicate higher Bouguer anomaly values for Buruanga Peninsula than those for Antique Range, separated by a sudden decrease in gravity values toward the east-southeast (ESE) direction. Forward gravity data modeling indicates the presence of an underlying basaltic subducted slab in the Buruanga Peninsula. Furthermore, the Nabas Fault is characterized as an east-dipping thrust structure formed by Buruanga Peninsula basement leading edge subduction beneath Antique Range. Additional geophysical constraints were provided by shallow seismic refraction and electrical resistivity surveys. Results from both methods delineated the shallow subsurface signature of the Nabas Fault buried beneath alluvium deposits. The gravity, seismic refraction and electrical resistivity methods were consistent in identifying the Nabas Fault as the terrane boundary between the Buruanga Peninsula and the Antique Range. The three geophysical methods helped constrain the subsurface configuration in Northwest Panay.

Loading Apex Mining Company Inc. collaborators
Loading Apex Mining Company Inc. collaborators