Entity

Time filter

Source Type

Pasig City, Philippines

Manalo P.C.,University of the Philippines at Diliman | Dimalanta C.B.,University of the Philippines at Diliman | Ramos N.T.,University of the Philippines at Diliman | Faustino-Eslava D.V.,University of the Philippines at Los Banos | And 3 more authors.
Surveys in Geophysics | Year: 2016

Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc–continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc–continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust–mantle interface. © 2016 Springer Science+Business Media Dordrecht Source


Manalo P.C.,University of the Philippines at Diliman | Dimalanta C.B.,University of the Philippines at Diliman | Faustino-Eslava D.V.,University of the Philippines at Los Banos | Payot B.D.,University of the Philippines at Diliman | And 4 more authors.
Terrestrial, Atmospheric and Oceanic Sciences | Year: 2015

This paper presents the first field, geochemical and geophysical information on the recently recognized Early Cretaceous Balud Ophiolitic Complex (BOC) in the island of Masbate in the Central Philippines. Mapping of the western limb of the island revealed that only the upper crustal section of the BOC is exposed in this area. Geochemically, the pillow basalts are characterized by transitional mid-oceanic ridge basalt-island arc tholeiitic compositions. Gravity surveys yielded low Bouguer anomaly values that are consistent with the highly dismembered nature of the BOC. Short wavelength, high amplitude magnetic anomalies registered across the study area are attributed to shallow magnetic sources. This is taken to support the model that the ophiolitic complex occurs as thin crustal slivers that are not deeply-rooted in the mantle. Comparing BOC with other ophiolites in the Central Philippines, such as those in the islands of Sibuyan, Leyte and Bohol, suggests the possibility of a common or contiguous source for similarly-aged and geochemically composed crust-mantle sequences in the region. Source


Salapare R.C.,University of the Philippines at Diliman | Dimalanta C.B.,University of the Philippines at Diliman | Ramos N.T.,University of the Philippines at Diliman | Manalo P.C.,University of the Philippines at Diliman | And 4 more authors.
Geophysical Journal International | Year: 2015

The Zambales Ophiolite Complex (ZOC) in the western portion of Luzon Island, Philippines represents a typical exposure of an emplaced crust-upper mantle section of an ancient lithosphere. The ZOC is divided into the Acoje and Coto Blocks based on petrological, geochemical and age disparities, thus implying diverse and complex origins for the archipelago's lithospheric sources.We used gravity and magnetic data to reveal differences in the subsurface characteristics of the two ophiolite blocks for the first time. Low Bouguer gravity (<135 mGal) and magnetic (<69 nT) anomalies characterize the ophiolitic units in the Acoje Block whereas high Bouguer gravity (>150 mGal) and magnetic (>110 nT) anomalies typify the Coto Block. Such contrasting signatures further extend at greater depths which reflect the disparities in the crustal density, the basement structure, and the depth to Moho. Petrophysical characteristics such as density, magnetic susceptibility and natural remanent magnetization (NRM) intensities correlate well with the interpreted Bouguer gravity and magnetic anomalies. Densities of gabbros and peridotites from the Acoje and Coto Blocks reveal mean values ranging from 2640 to 2810 kg m-3 and 2570 to 2690 kg m-3, respectively. Magnetic susceptibility (>4.43 × 10-3 SI) and NRM (>0.69 A m-1) data are also generally higher over the Coto Block. Both Bouguer gravity and magnetic anomaly maps reveal a prominent steep gradient that potentially marks the structural contact between Acoje and Coto Blocks. We further infer that the steep anomaly gradient validates the presence of the Lawis Fault Zone which separates the two ophiolite blocks in the Masinloc Massif. Recent field evidence from rock exposures in Coto reveals both right lateral and vertical displacements along the fault zone. © The Author 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society. Source


Dimalanta C.B.,University of the Philippines at Diliman | Salapare R.C.,University of the Philippines at Diliman | Faustino-Eslava D.V.,University of the Philippines at Los Banos | Ramos N.T.,University of the Philippines at Diliman | And 5 more authors.
Journal of Asian Earth Sciences | Year: 2015

The Zambales Ophiolite Complex in Luzon, Philippines is made up of two blocks with differing geochemical signatures and ages - the Middle Jurassic to Early Cretaceous Acoje Block-San Antonio Massif that is of island arc tholeiite composition and the Eocene Coto Block-Cabangan Massif which is of transitional mid-ocean ridge basalt-island arc tholeiite affinity. These ophiolitic bodies are overlain by Miocene to Pliocene sedimentary units whose petrochemistry are reported here for the first time. Varying degrees of influences from ophiolitic detritus and from arc volcanic materials, as shown by petrography and indicator elements including Cr, Co and Ni, are observed in these sedimentary formations from north to south and from the oldest to the youngest. The Early to Middle Miocene Cabaluan Formation, whose outcrops are found to overlie only the Acoje Block, registers a more dominant ophiolitic signature as compared to the Late Miocene to Pliocene Santa Cruz Formation. The Santa Cruz Formation is generally characterized by fewer ophiolitic clasts and higher amounts of felsic components. Additionally, within this formation itself, a pronounced compositional change is observed relative to its spatial distribution. From the south to the north, an increase in ophiolitic components and a relative decrease in felsic signature is noted in units of the Santa Cruz Formation. It is therefore inferred that changes in the petrochemistry of rocks from the older Cabaluan to the younger Santa Cruz sedimentary formations record a decline in the influx of ophiolitic detritus or, conversely, the introduction of more diverse sediment sources as the deposition progressed. Detrital zircon U-Pb ages from the Santa Cruz Formation, with peaks at 46.73 ± 0.94 and 5.78 ± 0.13. Ma, reflects this change in provenance from the unroofing of an Early Eocene oceanic crust to fresh contributions from an active volcanic arc during the Late Miocene. The contrast in compositions of the southern and northern Santa Cruz Formation also indicates a closer proximity of the southern units to the source of these non-ophiolitic sources, which most likely corresponds to the Pliocene volcanoes of the West Luzon Arc. © 2014 Elsevier Ltd. Source


Manalo P.C.,University of the Philippines at Diliman | Dimalanta C.B.,University of the Philippines at Diliman | Faustino-Eslava D.V.,University of the Philippines at Los Banos | Ramos N.T.,University of the Philippines at Diliman | And 3 more authors.
Journal of Asian Earth Sciences | Year: 2015

Offshore and ground gravity data were utilized to estimate crustal thickness across the Central Philippines where a transition from continental to island arc terrane occurs. Significant differences in gravity anomalies were observed between the Palawan Microcontinental Block (PCB) and the Philippine Mobile Belt (PMB), two major terranes that came together through arc-continent collision. Islands of the PCB (Mindoro, Tablas, Romblon, Sibuyan and western Panay), made up of an assortment of continent-derived sedimentary and igneous rocks and slivers of ophiolitic bodies, register lower Bouguer anomalies compared to that displayed by Masbate Island in the PMB. The calculated crustal thickness of this region exhibits a complex Moho topography of non-uniform depth across the collision zone with the thickest parts (~32. km) corresponding with ophiolitic units emplaced consequent to arc-continent collision. On the other hand, relatively thinner crust (~21. km) within the collision zone coincides with areas surmised to have undergone attenuation following intra-arc rifting. The same characteristics are observed offshore of western Mindoro and within the Marinduque Basin, areas known to have experienced crustal thinning following regional tectonic rearrangements that triggered riftings and intra-basin openings. © 2014 Elsevier Ltd. Source

Discover hidden collaborations