Entity

Time filter

Source Type


Tong Q.,Royal Veterinary College | McGonnell I.M.,Royal Veterinary College | Romanini C.E.B.,Catholic University of Leuven | Bergoug H.,Anses Unit of Epidemiology and Welfare in Poultry and Rabbit Farming | And 8 more authors.
British Poultry Science | Year: 2015

Abstract: 1. Previous research has reported that chicken embryos develop a functionary auditory system during incubation and that prenatal sound may play an important role in embryo development and alter the hatch time. In this study the effects of prenatal auditory stimulation on hatch process, hatch performance, the development of embryo and blood parameters were investigated. 2. Four batches of Ross 308 broiler breeder eggs were incubated either in control or in sound-stimulated groups. The sound-stimulated embryos were exposed to a discontinuous sound of species-specific calls by means of a speaker at 72 dB for 16 h a day: maternal calls from d 10 to d 19 of incubation time and embryo/chick calls from d 19 until hatching. The species-specific sound was excluded from the control group. 3. The onset of hatch was delayed in the sound-stimulated group compared to the controls. This was also supported by comparison of the exact hatching time of individual focal chicks within the two groups. However, the sound-stimulated embryos had a lower hatchability than the control group, mainly due to significantly increased numbers of late deaths. 4. The embryos exhibited a similar growth pattern between the sound-stimulated group and the control group. Although sound exposure decreased body weight at d 16, no consistent effect of sound on body weight at incubation stage was observed. Species-specific sound stimulation also had no impact on chick quality, blood values and plasma corticosterone concentrations during hatch. © 2015, © 2015 British Poultry Science Ltd. Source


Tong Q.,Royal Veterinary College | McGonnell I.M.,Royal Veterinary College | Roulston N.,Petersime NV. | Bergoug H.,Anses Unit of Epidemiology and Welfare in Poultry and Rabbit Farming | And 7 more authors.
British Poultry Science | Year: 2015

1. It has been reported that the increasing CO2 tension triggers the embryo to pip the air cell and emerge from the egg. However, the mechanism by which higher CO2 concentrations during the last few days of incubation affect chick physiology and the hatching process is unclear. This study investigated the effect of CO2 concentrations up to 1% during pipping, on the onset and length of the hatch window (HW) and chick quality. 2. Four batches of Ross 308 broiler eggs (600 eggs per batch) were incubated in two small-scale custom-built incubators (Petersime NV). During the final 3 d of incubation, control eggs were exposed to a lower CO2 concentration (0.3%), while the test eggs experienced a higher CO2 concentration programme (peak of 1%). 3. There were no significant differences in blood values, organ weight and body weight. There was also no difference in hatchability between control and test groups. However, a small increase in the chick weight and the percentage of first class chicks was found in the test groups. Furthermore, plasma corticosterone profiles during hatching were altered in embryos exposed to higher CO2; however, they dropped to normal levels at d 21 of incubation. Importantly, the hatching process was delayed and synchronised in the test group, resulting in a narrowed HW which was 2.7 h shorter and 5.3 h later than the control group. 4. These results showed that exposing chicks to 1% CO2 concentration during pipping did not have negative impacts on physiological status of newly hatched chicks. In addition, it may have a significant impact on the physiological mechanisms controlling hatching and have benefits for the health and welfare of chickens by reducing the waiting time after hatching. © 2015 British Poultry Science Ltd. Source


Bergoug H.,Anses Unit of Epidemiology and Welfare in Poultry and Rabbit Farming | Burel C.,Anses Unit of Epidemiology and Welfare in Poultry and Rabbit Farming | Guinebretiere M.,Anses Unit of Epidemiology and Welfare in Poultry and Rabbit Farming | Tong Q.,Lane College | And 9 more authors.
World's Poultry Science Journal | Year: 2013

The zootechnical performances of broilers at the end of the rearing period depend in part on the quality of day-old chicks at placement. The quality of day-old chicks is highly affected by the incubation conditions, by hatch time (which determines the time spent in the hatcher under high temperature and humidity), and by the handling of chicks after hatch. This article first presents an overview of the most relevant pre-incubation factors that affect chick quality: egg size, egg weight, quality of eggs, sex of embryos, age of breeders, and conditions and duration of egg storage. It then reviews the most important incubation factors that affect hatch time, hatchability and hatch window (temperature, humidity, turning, ventilation and concentration of gases). Finally, the effect of early post-hatch handling (including processing and especially transportation of chicks) as a possible source of stress influencing the quality of chicks at placement is discussed. © World's Poultry Science Association 2013. Source

Discover hidden collaborations