Time filter

Source Type

Naples, Italy

AnsaldoBreda S.p.A. is a loss-making rail transport engineering company based in Italy. The company designs and manufactures railway and mass transit vehicles. As of January 2015, Hitachi and Insigma were both bidding to buy AnsaldoBreda from Finmeccanica. Wikipedia.

Ansaldobreda S. P. A. | Date: 2010-09-08

A squirrel-cage rotor for asynchronous motors is provided with a lamination stack made of a magnetic material and a plurality of bars, the intermediate portions of which engage respective slots of the lamination stack; the end portions of the bars protrude with respect to the lamination stack at both axial ends of the rotor and are fixed to two shorting rings; a plurality of spaces are defined, axially, by the lamination stack and the shorting rings, and tangentially by the end portions of the bars; part of such spaces is engaged by stiffening blocks arranged in contact with the end portions of the adjacent bars.

A method for controlling the switching of an inverter, a bridge of which is adapted to chop a voltage from a direct voltage source for feeding a chopped voltage to a primary of a transformer; the inverter comprises a diode rectifier circuit receiving the input voltage from the secondary of the transformer in order to achieve a voltage fed to a chopper which feeds a load. The method comprises: a step in which the switches of the bridge are driven so that the power source is disconnected from the primary, the terminals of which are connected to each other by at least two of the electronic switches and recirculation diodes of the bridge itself, so that the voltage present on the secondary of said transformer is null; a step in which the switching of at least one electronic switch of a chopper branch is achieved when the voltage on the secondary is substantially null in order to minimize switching losses due to the opening/closing of the electronic switch of the chopper.

Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: SST.2012.1.1-3. | Award Amount: 6.95M | Year: 2012

MERLINs main aim and purpose is to investigate and demonstrate the viability of an integrated management system to achieve a more sustainable and optimised energy usage in European electric mainline railway systems. MERLIN will provide an integrated optimisation approach that includes multiple elements, dynamic forecasting supply-demand scenarios and cost considerations to support operational decisions leading to a cost-effective intelligent management of energy and resources through: Improved design of existing and new railway distribution networks and electrical systems as well as their interfaces with the public grid and considering network interconnections Better understanding of the influence on energy demand of operations and operational procedures of the different elements of the railway system Identification of technologies and solutions able to further contribute to the optimisation of energy usage More efficient traction energy supply based on optimised use of resources Understanding of the cross-dependency between these different technological solutions to define optimum combinations for optimised energy usage Improving cost effectiveness of the overall railway system Contribution to European standardisation (TecRec) MERLIN will also deliver the interface protocol and the architecture for energy management systems in the railway domain, combining the technical development with new business model that would enable and foster their application.

Ansaldobreda S. P. A. | Date: 2010-07-02

A method of detecting faults in a member having a first and second face opposite each other and communicating fluidically in the presence of at least one fault; the method including the steps of: generating a first sound signal by means of a transmitter, so that the first sound signal interacts with at least one portion of the first face of the member; arranging a receiver, configured to receive a second sound signal, close to a respective portion of the second face of the member corresponding to the portion of the first face, the second sound signal being the outcome of the first sound signal interacting with the member; moving the receiver, close to the second face of the member; generating a detection signal, by means of the receiver, as a function of the received second sound signal; calculating, at a number of instants (t

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: MG-2.3-2014 | Award Amount: 16.00M | Year: 2015

The ROLL2RAIL project aims to develop key technologies and to remove already identified blocking points for radical innovation in the field of railway vehicles, as part of a longer term strategy to revolutionise the rolling stock for the future. The high level objectives of the work are to pave the way to: Increase the capacity of the railway system and bring flexibility to adapt capacity to demand Increase availability, operational reliability and therefore punctuality of the vehicles Reduce the life cycle costs of the vehicle and the track Increase the energy efficiency of the system Improve passenger comfort and the attractiveness of rail transport Specific developments are proposed the scope of ROLL2RAIL: Basis of a radically new traction technology based on emerging electronic components leading towards more energy-efficient traction, which is lighter and more reliable while reducing the noise emitted New wireless technology applied to train control functionalities will allow more flexible coupling to increase line capacity Carbody solutions based on lightweight composite materials to reduce weight A way of quantifying the life-cycle cost impact of new technological solutions for running gear; Knowledge database of the variety of requirements in Europe for the braking systems to bring down barriers to step-change innovation in this area Standardised methodologies for assessing attractiveness and comfort from the passengers point of view Methodology for noise source separation techniques allowing implementation of novel and more efficient noise mitigation measures It is also the objective of ROLL2RAIL to serve as a preparation for a fast and smooth start up of the large scale initiative SHIFT2RAIL. All ROLL2RAIL results will ultimately lead to demonstration in real vehicles or relevant environments in SHIFT2RAIL.

Discover hidden collaborations